【问题描述】
北航主要办公科研楼有新主楼、逸夫楼、如心楼、办公楼、图书馆、主楼、一号楼…。北航网络中心计划要给相关建筑物间铺设光缆进行网络连通,请给出用料最少的铺设方案。
编写程序输入一个办公区域分布图及建筑物之间的距离,计算出用料最少的铺设方案(只有一组最优解,不用考虑多组解)。要求采用Prim或Kruskal算法实现。
【输入形式】
办公区域分布图的顶点(即建筑物)按照自然数(0,1,2,n-1)进行编号,从标准输入中首先输入两个正整数,分别表示线路图的顶点的数目和边的数目,然后在接下的行中输入每条边的信息,每条边占一行,具体形式如下:
<n> <e> <id> <vi> <vj> <weight> ...
即顶点vi和vj之间边的权重是weight,边的编号是id。
【输出形式】
输出铺设光缆的最小用料数,然后另起一行输出需要铺设的边的id,并且输出的id值按照升序输出。
【样例输入】
6 10 1 0 1 600 2 0 2 100 3 0 3 500 4 1 2 500 5 2 3 500 6 1 4 300 7 2 4 600 8 2 5 400 9 3 5 200 10 4 5 600
【样例输出】
1500 2 4 6 8 9
【样例说明】
样例输入说明该分布图有6个顶点,10条边;顶点0和1之间有条边,边的编号为1,权重为600;顶点0和2之间有条边,权重为100,其它类推。