2025年裂缝分割Paper整理

标题:Hybrid-Segmentor: Hybrid approach for automated fine-grained crack segmentation in civil infrastructure

发表期刊 Automation in Construction(1区9.6)
内容 介绍了一种名为Hybrid-Segmentor的深度学习模型,结合了卷积神经网络(CNN)和基于Transformer的架构,能够提取细粒度的局部特征和全局裂缝模式,从而显著提升裂缝检测的准确性。
创新点 高效检测基础设施中的裂缝,能够在多种表面类型和复杂成像条件下(如模糊图像和复杂裂缝轮廓)表现出色。此外,研究者还通过图像处理技术整合并优化了多个公开的裂缝数据集,创建了一个增强且广泛的数据集。
数据集 自建数据集Table1
对比模型 Table2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小驹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值