标题:Hybrid-Segmentor: Hybrid approach for automated fine-grained crack segmentation in civil infrastructure
发表期刊 | Automation in Construction(1区9.6) |
内容 | 介绍了一种名为Hybrid-Segmentor的深度学习模型,结合了卷积神经网络(CNN)和基于Transformer的架构,能够提取细粒度的局部特征和全局裂缝模式,从而显著提升裂缝检测的准确性。 |
创新点 | 高效检测基础设施中的裂缝,能够在多种表面类型和复杂成像条件下(如模糊图像和复杂裂缝轮廓)表现出色。此外,研究者还通过图像处理技术整合并优化了多个公开的裂缝数据集,创建了一个增强且广泛的数据集。 |
数据集 | 自建数据集Table1 |
对比模型 | Table2 |