基础算法之前缀和于差分

前缀和

这里我们讨论一维前缀和与二维前缀和,分别应用于一维序列和二维矩阵序列,主要的操作有两个,一是求出前缀和序列,二是根据前缀和求出某个区间的和,其中二维前缀和的两个操作都应用到了容斥原理,需要注意的一点是,如果题目对空间的要求比较高,那么我们可以考虑只用一个数组来保存前缀和,而不需要数组来记录数据,以节省空间,

for (int i = 1; i <= n; i++) {
	cin >> a[i];
	b[i] = b[i - 1] + a[i];
}

int x = b[r] - b[l - 1];

for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= m; j++) {
		cin >> a[i][j];
		b[i][j] = a[i][j] + b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
	}
}

int x = b[x2][y2] - b[x1 - 1][y2] - b[x2][y1 - 1] + b[x1 - 1][y1 - 1];

利用前缀和线性求最大子列和,里面应该还有别的思想,但是理解不了,暂时先记住

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 5;

int a[N], b[N];

int main() {
	int n;
	cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		b[i] = b[i - 1] + a[i];
	}
	int Min = 1e9;
	int ans = -1e9;
	for (int i = 1; i <= n; i++) {
		Min = min(Min, b[i - 1]);
		ans = max(ans, b[i] - Min);
	}
	cout << ans;
	return 0;
}

差分

这里说的是序列差分,首先是一维差分和二维差分,也是对应一维序列二维序列,差分也是主要有两个操作,一是求差分序列,而是对差分序列进行修改,最后求前缀和序列以O(1)实现区间修改,所以可以看出,差分是前缀和的逆运算,同时差分具有局限性,一大堆的查询操作在最后那么适用,如果一边有修改一边有查询那么就要看时间复杂度够不够了,

for (int i = 1; i <= n; i++) {
	cin >> a[i];
	b[i] = a[i] - a[i - 1];
}

b[x1]++;
b[x2 + 1]--;

for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= m; j++) {
		cin >> a[i][j];
		b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];
	}
}

b[x1][y1]++;
b[x2 + 1][y1]--;
b[x1][y2 + 1]--;
b[x2 + 1][y2 + 1]++;

还有差分套差分,等掌握了再总结

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值