目录
一 实验目的
-
- 掌握从真值表中获得逻辑表达式的技巧
- 掌握根据逻辑表达式设计数字电路的技巧
- 掌握使用卡诺图化简逻辑表达式的方法
- 掌握加法器和复用器的功能和设计
- 掌握七段数码管的使用方法
f)了解显示模块在数字电路中的应用
二 实验环境
本实验采用Logisim电路仿真平台。在使用Logisim设计本实验要求的数字电路的时候,你必须使用基本的逻辑门完成设计,而不允许使用Logisim提供的运算器(如封装好的加法器、复用器或带译码器的七段数码管)。
三 实验记录
(A)补全Cout表:
Inputs | Outputs | |||
Cin | B | A | Cout | S |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
(1)设计一个2比特加法器
A1 | A0 | B1 | B0 | S1 | S0 | 溢出情况 |
0 | 0 | 0 | 0 | 0 | 0 | 无 |
0 | 0 | 0 | 1 | 0 | 1 | 无 |
0 | 0 | 1 | 0 | 1 | 0 | 无 |
0 | 0 | 1 | 1 | 1 | 1 | 无 |
0 | 1 | 0 | 0 | 0 | 1 | 无 |
0 | 1 | 0 | 1 | 1 | 0 | 无 |
0 | 1 | 1 | 0 | 1 | 1 | 无 |
0 | 1 | 1 | 1 | 0 | 0 | 有 |
1 | 0 | 0 | 0 | 1 | 0 | 无 |
1 | 0 | 0 | 1 | 1 | 1 | 无 |
1 | 0 | 1 | 0 | 0 | 0 | 有 |
1 | 0 | 1 | 1 | 0 | 1 | 有 |
1 | 1 | 0 | 0 | 1 | 1 | 无 |
1 | 1 | 0 | 1 | 0 | 0 | 无 |
1 | 1 | 1 | 0 | 0 | 1 | 有 |
1 | 1 | 1 | 1 | 1 | 0 | 有 |
哪些输入组合下,补码数的计算结果产生了溢出的现象?
如下表:
A1 | A0 | B1 | B0 | S1 | S0 | 溢出情况 |
0 | 1 | 1 | 1 | 0 | 0 | 有 |
1 | 0 | 1 | 0 | 0 | 0 | 有 |
1 | 0 | 1 | 1 | 0 | 1 | 有 |
1 | 1 | 1 | 0 | 0 | 1 | 有 |
1 | 1 | 1 | 1 | 1 | 0 | 有 |
在没有溢出发生的情况下,补码数能够在你的电路上获得正确的结果吗?
答:可以。
实际测试结果:
A0、B0、A1、B1都为0,B0+A0没有进位,A1+B1也没有进位,所以不溢出
A0=1、B0=0、A1=1、B1=0,B0+A0没有进位,A1+B1也没有进位,所以不溢出
A0=0、B0=1、A1=1、B1=1,B0+A0没有进位,A1+B1有进位,所以溢出
总结:
在这个实验中,我们设计并测试了一个2比特加法器。我们发现,只要没有溢出发生,补码数就能在我们的电路上获得正确的结果。具体来说,当A0、B0、A1、B1都为0时,B0+A0和A1+B1都没有进位,所以不会溢出。同样,当A0=1、B0=0、A1=1、B1=0时,B0+A0和A1+B1也都没有进位,所以也不会溢出。
当A0=0、B0=1、A1=1、B1=1时,虽然B0+A0没有进位,但A1+B1有进位,所以会发生溢出。这个结果强调了在设计和实现数字电路时,需要考虑到所有可能的输入情况,以确保电路在所有情况下都能正常工作。
这个实验提供了一个实际的场景,让我们更好地理解了数字电路设计的基本原理和技巧,包括从真值表中获得逻辑表达式,使用卡诺图化简逻辑表达式,以及设计和实现加法器和复用器等。这些知识和技能对于我们理解和设计更复杂的数字系统至关重要。