数字逻辑小实验(1)

目录

一 实验目的

二 实验环境

三 实验记录

(A)补全Cout表:

(1)设计一个2比特加法器

总结:


 

一 实验目的

    1. 掌握从真值表中获得逻辑表达式的技巧
    2. 掌握根据逻辑表达式设计数字电路的技巧
    3. 掌握使用卡诺图化简逻辑表达式的方法
    4. 掌握加法器和复用器的功能和设计
    5. 掌握七段数码管的使用方法

f)了解显示模块在数字电路中的应用

二 实验环境

本实验采用Logisim电路仿真平台。在使用Logisim设计本实验要求的数字电路的时候,你必须使用基本的逻辑门完成设计,而不允许使用Logisim提供的运算器(如封装好的加法器、复用器或带译码器的七段数码管)

三 实验记录

(A)补全Cout表:

Inputs

Outputs

Cin

B

A

Cout

S

0

0

0

0

0

0

0

1

0

1

0

1

0

0

1

0

1

1

1

0

1

0

0

0

1

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

(1)设计一个2比特加法器

 

3291fa0320ac461eac964e44e8932afb.png

A1

A0

B1

B0

S1

S0

溢出情况

0

0

0

0

0

0

0

0

0

1

0

1

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

0

    1

    无

0

1

0

1

1

0

0

1

1

0

1

1

0

1

1

1

0

0

1

0

0

0

1

0

1

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

1

1

1

0

0

1

1

1

1

0

1

0

0

1

1

1

0

0

1

1

1

1

1

1

0

哪些输入组合下,补码数的计算结果产生了溢出的现象?

如下表:

A1

A0

B1

B0

S1

S0

溢出情况

0

1

1

1

0

0

1

0

1

0

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

1

1

1

1

0

在没有溢出发生的情况下,补码数能够在你的电路上获得正确的结果吗?

答:可以。

实际测试结果:

 

7daada30e5a74668bb62497884a56ae7.png

 

A0、B0、A1、B1都为0,B0+A0没有进位,A1+B1也没有进位,所以不溢出

32245f02697e480ca1630d4418a79434.png

A0=1、B0=0、A1=1、B1=0,B0+A0没有进位,A1+B1也没有进位,所以不溢出

 

5d1a7bfab35b4f879db01ef971dfedeb.png

 A0=0、B0=1、A1=1、B1=1,B0+A0没有进位,A1+B1有进位,所以溢出

总结:

        在这个实验中,我们设计并测试了一个2比特加法器。我们发现,只要没有溢出发生,补码数就能在我们的电路上获得正确的结果。具体来说,当A0、B0、A1、B1都为0时,B0+A0和A1+B1都没有进位,所以不会溢出。同样,当A0=1、B0=0、A1=1、B1=0时,B0+A0和A1+B1也都没有进位,所以也不会溢出。

        当A0=0、B0=1、A1=1、B1=1时,虽然B0+A0没有进位,但A1+B1有进位,所以会发生溢出。这个结果强调了在设计和实现数字电路时,需要考虑到所有可能的输入情况,以确保电路在所有情况下都能正常工作。

        这个实验提供了一个实际的场景,让我们更好地理解了数字电路设计的基本原理和技巧,包括从真值表中获得逻辑表达式,使用卡诺图化简逻辑表达式,以及设计和实现加法器和复用器等。这些知识和技能对于我们理解和设计更复杂的数字系统至关重要。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值