二叉树的定义
二叉树是n个结点所构成的集合
非空树:
1.有且仅有一个称之为根的结点
2.除根结点以外的其余结点分为两个互不相交的子集T1和T2,分别称为T的左子树和右子树,且T1和T2本身都是二叉树
二叉树和树的区别:
1.二叉树每个结点至多只有两颗子树(二叉树中不存在度大于2的结点)
2.二叉树的子树有左右之分,其次序不能任意颠倒
二叉树一般有五种形态
二叉树的性质
性质1:在二叉树的第i层上至多有2^(i-1)个结点
第i层上至少有1个结点
性质2:深度为k的二叉树至多有2^k-1个结点
深度为k时至少有k个结点
还有两种特殊的二叉树:满二叉树和完全二叉树
满二叉树:深度为k且含有2^k-1个结点的二叉树,它的特点是每一层上的结点数都是最大结点数,即每一层i的结点树都具有最大值2^(i-1)。
完全二叉树:深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。其特点为:
1.叶子结点只可能在层次最大的两层上出现
2.对任一结点,若其右分支下的子孙的最大层次为l,则其左分支下的子孙的最大层次必为l或l+1.
注意:在满二叉树中,从最后一个结点开始,连续去掉任意个结点,即是一颗完全二叉树。一定是连续的去掉。
性质4:具有n个结点的完全二叉树的深度为不大于以2为底的对数n+1.
性质5:1.如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则双亲PARENT(i)是结点不大于i/2的最大整数。
2.如果2i>n,则结点i无左孩子
3.如果2i+1>n,则结点i无右孩子