树和二叉树1.2

二叉树是一种特殊类型的树结构,每个节点最多有两个子节点,分为左子树和右子树。二叉树的关键特征包括其层级节点数量、满二叉树和完全二叉树的定义。完全二叉树是每个节点都与满二叉树对应,叶子节点只出现在最上两层,且节点的双亲和孩子关系有特定规则。
摘要由CSDN通过智能技术生成

二叉树的定义

二叉树是n个结点所构成的集合

非空树:

1.有且仅有一个称之为根的结点

2.除根结点以外的其余结点分为两个互不相交的子集T1和T2,分别称为T的左子树和右子树,且T1和T2本身都是二叉树

二叉树和树的区别:

1.二叉树每个结点至多只有两颗子树(二叉树中不存在度大于2的结点)

2.二叉树的子树有左右之分,其次序不能任意颠倒

二叉树一般有五种形态

二叉树的性质

性质1:在二叉树的第i层上至多有2^(i-1)个结点

第i层上至少有1个结点

性质2:深度为k的二叉树至多有2^k-1个结点

深度为k时至少有k个结点

还有两种特殊的二叉树:满二叉树和完全二叉树

满二叉树:深度为k且含有2^k-1个结点的二叉树,它的特点是每一层上的结点数都是最大结点数,即每一层i的结点树都具有最大值2^(i-1)。

完全二叉树:深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。其特点为:

1.叶子结点只可能在层次最大的两层上出现

2.对任一结点,若其右分支下的子孙的最大层次为l,则其左分支下的子孙的最大层次必为l或l+1.

注意:在满二叉树中,从最后一个结点开始,连续去掉任意个结点,即是一颗完全二叉树。一定是连续的去掉。

性质4:具有n个结点的完全二叉树的深度为不大于以2为底的对数n+1.

性质5:1.如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则双亲PARENT(i)是结点不大于i/2的最大整数。

2.如果2i>n,则结点i无左孩子

3.如果2i+1>n,则结点i无右孩子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值