【Leetcode每日一题】 综合练习 - 组合(难度⭐⭐)(78)

1. 题目解析

题目链接:77. 组合

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

题目要求我们从 1 到 n 的整数集合中选择 k 个数的所有组合,且组合中的元素不考虑顺序。这意味着集合 [1, 2] 和 [2, 1] 被视为等价。为了找出所有不重复的组合,我们可以采用深度优先搜索(DFS)的策略,并在搜索过程中遵循一定的规则来避免产生重复的组合。

DFS函数设计

函数名:void dfs(vector<vector<int>>& ans, vector<int>& curr, int step, int n, int k)

  • ans:用于存储所有找到的组合的二维数组。
  • curr:用于存储当前正在构建的组合的一维数组。
  • step:当前处理的位置,即 curr 数组中下一个要填充的位置。
  • n:可选元素的上限。
  • k:需要选择的元素个数。

具体实现步骤

  1. 初始化
    • 定义一个二维数组 ans 用于存储所有找到的组合。
    • 定义一个一维数组 curr 用于存储当前正在构建的组合。
  2. 递归逻辑
    • 结束条件:当 step 达到 k 时,表示当前组合已经包含了 k 个元素,将其添加到 ans 中,并返回。
    • 剪枝:如果当前位置 step 加上剩余可选元素个数(n - step + 1)小于 k,表示从当前位置开始无法构造出满足要求的组合,直接返回。
    • 递归调用:从 step 开始遍历到 n,对于每个遍历到的元素 i,执行以下操作:
      • 将 i 添加到 curr 数组的 step 位置。
      • 递归调用 dfs 函数,传入更新后的 curr 数组、step + 1(表示处理下一个位置)、n 和 k
      • 回溯:在递归返回后,需要将 curr 数组中 step 位置的元素移除,以便尝试其他可能的元素。

算法逻辑解释

  • 通过遍历 1 到 n 的每个元素作为组合的首位元素,我们可以确保每个组合的首位元素都是唯一的。
  • 在递归过程中,我们始终保证当前位置 step 的元素不小于前一个位置的元素,从而避免了产生重复的组合(如 [1, 2] 和 [2, 1])。
  • 当组合中元素的个数达到 k 时,我们将其视为一个有效的组合,并存储起来。
  • 通过剪枝操作,我们可以提前终止那些无法构造出满足要求组合的递归分支,从而提高算法的效率。

3.代码编写

class Solution {
    vector<int> path;
    vector<vector<int>> ret;
    int m, o;
public:
    vector<vector<int>> combine(int n, int k) 
    {
        o = n, m = k;
        dfs(1);
        return ret;
    }
    void dfs(int start)
    {
        if(path.size() == m)
        {
            ret.push_back(path);
            return;
        }
        for(int i = start; i <= o; i++)
        {
            path.push_back(i);
            dfs(i + 1); // 下一层是从我添加的这个数开始的
            path.pop_back();
        }
    }
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天进步亿丢丢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值