前缀和与差分——中位数图

题目描述

给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。

输入描述

第一行为两个正整数n和b ,第二行为1~n 的排列。

输出描述

输出一个整数,即中位数为b的连续子序列个数。

示例1

输入

7 4

5 7 2 4 3 1 6

输出

4

备注

对于30%的数据中,满足 n≤100;

对于60%的数据中,满足 n≤1000;

对于100%的数据中,满足 n≤100000,1≤b≤n。

思路:

  • 题目限定了序列的长度为奇数,那么这个中位数一定在这个1~n中
  • 一个序列的中位数,表示从小到大排序之后,位于中间位置的数,那么一定可以得到:小于中位数的个数等于大于中位数的个数
  • 把1~n中小于中位数b的数修改为-1, 大于中位数b的数修改为1
  • 如何判断一个序列中的中位数是b呢?在这个序列中,1和-1的个数相同,也就是序列的和减去中位数b为0

  • 计算有多少个连续子序列的中位数是b:先找到中位数b在1~n中对应的下标
  1. 从n-1开始遍历,一直遍历到左端点,用sum来记录一个连续子序列的右端点是中位数b的子序列的和,如果当前sum为0,表示以当前遍历的这个数为左端点,中位数b为右端点的连续子序列的中位数是b
  2. 在遍历中位数左侧区间的时候,我们需要声明一个数组变量tmp[],大小是n的2倍,这个数组的作用是记录中位数b左侧区间加上右侧区间满足条件的连续子序列
  3. 从n+1开始遍历,一直遍历到右端点,用sum来记录一个连续子序列的左端点是中位数b的子序列的和, 如果当前sum为0,表示以当前遍历的这个数为右端点,中位数b为左端点的连续子序列的中位数是b
  4. 每遍历一个点,用tmp[]数组匹配左侧区间

代码实现

#include <iostream>

using namespace std;

const int N = 1e5 + 10;
int n, b;
int ans[N], tmp[N << 1];

int main()
{
    scanf("%d%d", &n, &b);
    int idx = 0;
    for(int i = 1;i <= n; i++)
    {
        scanf("%d", &ans[i]);
        if(ans[i] < b) ans[i] = -1;	//小于中位数b的数修改为-1
        else if(ans[i] > b) ans[i] = 1;	// 大于中位数b的数修改为1
        else idx = i;	// 找到中位数b在序列中的下标
    }
    int res = 1;	// 记录有多少个连续子序列的中位数是b
    int sum = 0;	// 记录左侧区间和右侧区间1和-1的总和
    for(int i = idx - 1; i >= 1; i--)
    {
        sum += ans[i];
        if(!sum) res++;	// 以中位数b为右端点的左侧区间的中位数是b
        tmp[n + sum]++;	// tmp[]数组,记录左侧区间中大于、小于中位数的种类
    }
    sum = 0;
    for(int i = idx + 1; i <= n; i++)
    {
        sum += ans[i];
        if(!sum) res++;	// 以中位数b为左端点的右侧区间的中位数是b
        res += tmp[n-sum];	// 左侧区间与右侧区间相匹配的连续子序列
    }
    printf("%d\n", res);
    
    return 0;
}
  • 8
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
前缀和差分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和差分的定义、用法和常见问题。 ## 前缀和 前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 差分 差分前缀和相反,它主要用来对区间进行修改。我们可以利用差分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的差分数组。 ### 用法 差分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将差分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对差分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对差分数组的 $d_l$ 加上 $k$; 2. 对差分数组的 $d_{r+1}$ 减去 $k$; 3. 对差分数组求前缀和,得到修改后的序列。 差分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出差分数组。但是,如果有多次区间修改需要进行,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用差分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 差分数组 // 计算差分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对差分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 差分数组的长度是多少? 差分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用差分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和差分的本质区别是什么? 前缀和差分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 差分是通过预处理差分数组来优化区间修改。 ### 4. 前缀和差分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用差分数组对区间进行修改,然后再对差分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值