什么是缓存穿透呢?
我们知道,当请求查询缓存未命中时,需要查询数据库以加载缓存。但是大家思考一下这样的场景:
如果我访问一个数据库中也不存在的数据。会出现什么现象?
由于数据库中不存在该数据,那么缓存中肯定也不存在。因此不管请求该数据多少次,缓存永远不可能建立,请求永远会直达数据库。
假如有不怀好意的人,开启很多线程频繁的访问一个数据库中也不存在的数据。由于缓存不可能生效,那么所有的请求都访问数据库,可能就会导致数据库因过高的压力而宕机。
解决这个问题有两种思路:
缓存空值
布隆过滤器
缓存空值
简单来说,就是当我们发现请求的数据即不存在与缓存,也不存在与数据库时,将空值缓存到Redis,避免频繁查询数据库。
优点:
实现简单,维护方便
缺点:
额外的内存消耗
布隆过滤器
布隆过滤是一种数据统计的算法,用于检索一个元素是否存在一个集合中。
一般我们判断集合中是否存在元素,都会先把元素保存到类似于树、哈希表等数据结构中,然后利用这些结构查询效率高的特点来快速匹配判断。但是随着元素数量越来越多,这种模式对内存的占用也越来越大,检索的速度也会越来越慢。而布隆过滤的内存占用小,查询效率却很高。
布隆过滤首先需要一个很长的bit数组,默认数组中每一位都是0.
然后还需要K
个hash
函数,将元素基于这些hash函数做运算的结果映射到bit数组的不同位置,并将这些位置置为1,例如现在k=3:
-
hello
经过运算得到3个角标:1、5、12 -
world
经过运算得到3个角标:8、17、21 -
java
经过运算得到3个角标:17、25、28
则需要将每个元素对应角标位置置为1:
此时,我们要判断元素是否存在,只需要再次基于K
个hash
函数做运算, 得到K
个角标,判断每个角标的位置是不是1:
-
只要全是1,就证明元素存在
-
任意位置为0,就证明元素一定不存在
假如某个元素本身并不存在,也没添加到布隆过滤器过。但是由于存在hash碰撞的可能性,这就会出现这个元素计算出的角标已经被其它元素置为1的情况。那么这个元素也会被误判为已经存在。
因此,布隆过滤器的判断存在误差:
-
当布隆过滤器认为元素不存在时,它肯定不存在
-
当布隆过滤器认为元素存在时,它可能存在,也可能不存在
当bit
数组越大、Hash
函数K
越复杂,K
越大时,这个误判的概率也就越低。由于采用bit
数组来标示数据,即便4,294,967,296
个bit
位,也只占512mb
的空间
我们可以把数据库中的数据利用布隆过滤器标记出来,当用户请求缓存未命中时,先基于布隆过滤器判断。如果不存在则直接拒绝请求,存在则去查询数据库。尽管布隆过滤存在误差,但一般都在0.01%左右,可以大大减少数据库压力。
缓存雪崩
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
常见的解决方案有:
给不同的Key的TTL添加随机值,这样KEY的过期时间不同,不会大量KEY同时过期
利用Redis集群提高服务的可用性,避免缓存服务宕机
给缓存业务添加降级限流策略
给业务添加多级缓存,比如先查询本地缓存,本地缓存未命中再查询Redis,Redis未命中再查询数据库。即便Redis宕机,也还有本地缓存可以抗压力
缓存击穿
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
由于我们采用的是Cache Aside
模式,当缓存失效时需要下次查询时才会更新缓存。当某个key缓存失效时,如果这个key是热点key,并发访问量比较高。就会在一瞬间涌入大量请求,都发现缓存未命中,于是都会去查询数据库,尝试重建缓存。可能一瞬间就把数据库压垮了。
常见的解决方案有两种:
互斥锁:给重建缓存逻辑加锁,避免多线程同时指向
逻辑过期:热点key不要设置过期时间,在活动结束后手动删除。
面试题:如何解决缓存穿透问题?
答:缓存穿透也可以说是穿透攻击,具体来说是因为请求访问到了数据库不存在的值,这样缓存无法命中,必然访问数据库。如果高并发的访问这样的接口,会给数据库带来巨大压力。
我们项目中都是基于布隆过滤器来解决缓存穿透问题的,当缓存未命中时基于布隆过滤器判断数据是否存在。如果不存在则不去访问数据库。
当然,也可以使用缓存空值的方式解决,不过这种方案比较浪费内存。
面试题:如何解决缓存雪崩问题?
答:缓存雪崩的常见原因有两个,第一是因为大量key同时过期。针对问这个题我们可以可以给缓存key设置不同的TTL值,避免key同时过期。
第二个原因是Redis宕机导致缓存不可用。针对这个问题我们可以利用集群提高Redis的可用性。也可以添加多级缓存,当Redis宕机时还有本地缓存可用。
面试题:如何解决缓存击穿问题?
答:缓存击穿往往是由热点Key引起的,当热点Key过期时,大量请求涌入同时查询,发现缓存未命中都会去访问数据库,导致数据库压力激增。解决这个问题的主要思路就是避免多线程并发去重建缓存,因此方案有两种。
第一种是基于互斥锁,当发现缓存未命中时需要先获取互斥锁,再重建缓存,缓存重建完成释放锁。这样就可以保证缓存重建同一时刻只会有一个线程执行。不过这种做法会导致缓存重建时性能下降严重。
第二种是基于逻辑过期,也就是不给热点Key设置过期时间,而是给数据添加一个过期时间的字段。这样热点Key就不会过期,缓存中永远有数据。
查询到数据时基于其中的过期时间判断key是否过期,如果过期开启独立新线程异步的重建缓存,而查询请求先返回旧数据即可。当然,这个过程也要加互斥锁,但由于重建缓存是异步的,而且获取锁失败也无需等待,而是返回旧数据,这样性能几乎不受影响。
需要注意的是,无论是采用哪种方式,在获取互斥锁后一定要再次判断缓存是否命中,做dubbo check. 因为当你获取锁成功时,可能是在你之前有其它线程已经重建缓存了。