数据库性能优化思路讲解

背景

面对单表2千万数据量,且未来一年预计增长1000万的数据库性能问题,我们需要采取一系列优化措施来提升数据库性能。本文将从软优化、硬优化以及分库分表三个方面进行详细讲解。

优化思路

1. 不分库分表--软优化

a. 数据库参数调优
  • 调整数据库连接数等参数,以适应业务增长带来的压力。

b. 分析慢查询SQL语句
  • 分析执行计划,进行SQL优化和程序改写,以提高查询效率。

c. 优化数据库索引结构
  • 通过优化索引结构,减少查询时间,提高数据库性能。

d. 优化数据库表结构
  • 调整表结构,如添加索引、优化字段类型等,以提高数据存取效率。

e. 引入NoSQL的程序架构调整
  • 通过引入Redis等缓存技术,减轻数据库压力,提高系统响应速度。

2. 不分库分表--硬优化

a. 提升系统硬件
  • 升级系统硬件,如更快的IO、更多的内存、带宽、CPU和硬盘,以提高数据库处理能力。

3. 分库分表

a. 根据业务情况指定分表策略
  • 根据业务特点,如外卖、物流、电商等领域,制定合适的分表策略。

b. 分表
  • 通过分表解决单表数据量过大的问题,提高数据查询效率。

  • 注意:分表无法提高数据库并发操作的效率,因为分表操作仍然受限于数据库IO。

c. 分库分表
  • 如果分表无法满足需求,再考虑分库分表一起进行,以解决数据库性能瓶颈问题。

分库分表后的优缺点

解决的问题

  1. 解决数据库本身瓶颈

    • 连接数问题:解决因连接数过多导致的性能问题。

    • 单表海量数据查询性能问题。

    • 单个数据库的性能瓶颈问题。

  2. 解决系统本身IO、CPU瓶颈

    • 磁盘读写IO瓶颈。

    • 网络IO瓶颈。

    • CPU瓶颈。

带来的问题

  1. 跨节点数据库join关联查询和多维度查询

  2. 不同维度看数据,利用的partitionKey不一样

  3. 分库操作带来分布式事务问题

  4. 执行的SQL排序、翻页、函数问题

  5. 数据库全局主键重复问题

  6. 容量规划,分库分表后的二次扩容问题

  7. 分库分表技术选型问题

分库分表策略

Range策略

  • 基于范围进行分库分表,如按照ID范围或时间范围进行分片。

Hash取模

  • 通过Hash取模的方式进行分库分表,保证数据均匀分布。

垂直分库分表

  • 垂直分表:基于列字段进行拆分,将不常用的字段或大字段拆分到扩展表中。

  • 垂直分库:针对不同业务进行拆分,提高并发处理能力。

水平分库分表

  • 水平分表:将大表数据拆分到多张表中,每个表只有部分数据。

  • 水平分库:将表数据按照一定规则分到不同的数据库中,每个库的数据不重复。

分库分表工具介绍

  • Cobar(已淘汰)

  • TDDL:淘宝开发,基于JDBC规范,功能较少,主要用于阿里内部。

  • MyCat:开源中间件,遵守MySQL原生协议,跨语言、跨平台、跨数据库的通用代理。

  • Sharding-JDBC:基于JDBC驱动,支持任意实现JDBC规范的数据库,无需额外部署和依赖。

总结

在数据量及访问压力不大的情况下,首先考虑缓存、读写分离、索引技术等方案。如果数据量极大且业务持续增长快,再考虑分库分表策略。分库分表可以解决数据库性能瓶颈问题,但也会带来一系列新的挑战,需要根据业务特点和需求进行权衡和选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值