洛谷(仅用于个人学习)
# [CSP-J 2021] 分糖果
## 题目背景
红太阳幼儿园的小朋友们开始分糖果啦!
## 题目描述
红太阳幼儿园有 $n$ 个小朋友,你是其中之一。保证 $n \ge 2$。
有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。
由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 $R$ 块糖回去。
但是拿的太少不够分的,所以你至少要拿 $L$ 块糖回去。保证 $n \le L \le R$。
也就是说,如果你拿了 $k$ 块糖,那么你需要保证 $L \le k \le R$。
如果你拿了 $k$ 块糖,你将把这 $k$ 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有**不少于** $n$ 块糖果,幼儿园的所有 $n$ 个小朋友(包括你自己)都从篮子中拿走**恰好**一块糖,直到篮子里的糖数量**少于** $n$ 块。此时篮子里剩余的糖果均归你所有——这些糖果是**作为你搬糖果的奖励**。
作为幼儿园高质量小朋友,你希望让**作为你搬糖果的奖励**的糖果数量(**而不是你最后获得的总糖果数量**!)尽可能多;因此你需要写一个程序,依次输入 $n, L, R$,并输出你最多能获得多少**作为你搬糖果的奖励**的糖果数量。
## 输入格式
输入一行,包含三个正整数 $n, L, R$,分别表示小朋友的个数、糖果数量的下界和上界。
## 输出格式
输出一行一个整数,表示你最多能获得的**作为你搬糖果的奖励**的糖果数量。
## 样例 #1
### 样例输入 #1
```
7 16 23
```### 样例输出 #1
```
6
```## 样例 #2
### 样例输入 #2
```
10 14 18
```### 样例输出 #2
```
8
```
个人解法,但是只能AC到80分。就是要考虑周期问题,范围太广了,就会超时。
a=input().split()
n=int(a[0])
L=int(a[1])
R=int(a[2])
l=[]
if R-L+1>=n:
print(n-1)
else:
for i in range(L,R+1):
b=i%n
l.append(b)
print(max(l))
# 【深基4.习9】打分
## 题目描述
现在有 $n(n \le 1000)$ 位评委给选手打分,分值从 $0$ 到 $10$。需要去掉一个最高分,去掉一个最低分(如果有多个最高或者最低分,也只需要去掉一个),剩下的评分的平均数就是这位选手的得分。现在输入评委人数和他们的打分,请输出选手的最后得分,精确到 $2$ 位小数。
## 输入格式
第一行输入一个正整数 $n$,表示有 $n$ 个评委。
第二行输入 $n$ 个正整数,第 $i$ 个正整数表示第 $i$ 个评委打出的分值。
## 输出格式
输出一行一个两位小数,表示选手的最后得分。
## 样例 #1
### 样例输入 #1
```
5
9 5 6 8 9
```### 样例输出 #1
```
7.67
```## 提示
数据保证,$3 \leq n \leq 1000$,每个评委打出的分值为为 $0$ 到 $10$(含 $0$ 与 $10$)之间的整数。
就是利用python中列表的remove方法,就直接删除在列表中出现的第一个这个数,就能保证只删除了最大值/最小值的一个值。
n=int(input())
a=list(map(int,input().split()))
a.remove(max(a))
a.remove(min(a))
ave=round(sum(a)/len(a),2)
print(ave)
# [NOIP2002 普及组] 级数求和
## 题目描述
已知:$S_n= 1+\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{n}$。显然对于任意一个整数 $k$,当 $n$ 足够大的时候,$S_n>k$。
现给出一个整数 $k$,要求计算出一个最小的 $n$,使得 $S_n>k$。
## 输入格式
一个正整数 $k$。
## 输出格式
一个正整数 $n$。
## 样例 #1
### 样例输入 #1
```
1
```### 样例输出 #1
```
2
```## 提示
**【数据范围】**
对于 $100\%$ 的数据,$1\le k \le 15$。
**【题目来源】**
NOIP 2002 普及组第一题
一开始没想到怎么去实现,后来查了下,其实就是要迭代加起来,判断和k的大小。
k=int(input())
n=1
sum=0
while True:
sum += (1/n)
if sum>k:
break
n+=1
print(n)