算法设计与分析 例题 绘制Huffman树、循环赛、分治、最短路与动态规划

1.考虑用哈夫曼算法来找字符a,b,c,d,e,f 的最优编码。这些字符出现在文件中

的频数之比为 20:10:6:4:44:16。要求:

(1)(4 分)简述使用哈夫曼算法构造最优编码的基本步骤;

(2)(5 分)构造对应的哈夫曼树,并据此给出a,b,c,d,e,f 的一种最优编码。

解:1)、哈夫曼算法是构造最优编码树的贪心算法。其基本思想是,首先所

有字符对应n 棵树构成的森林,每棵树只有一个结点,根权为对应字符的频率。然后,重复

下列过程n-1 次:将森林中的根权最小的两棵树进行合并产生一个新树,该新树根的两个子

树分别是参与合并的两棵子树,根权为两个子树根权之和。

2)、根据题中数据构造哈夫曼树如下图所示。

由此可以得出 a,b,c,d,e,f 的一组最优的编码:01,0000,00010,00011, 1,001。

2.

设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:

每个选手必须与其他n-1名选手比赛各一次;每个选手一天至多只能赛一次;

循环赛要在最短时间内完成.
(1)(4分)循环赛最少需要进行( n-1 )天.

(2)(6分)当n=23=8时,请画出循环赛日程表:

1

2

3

4

5

6

7

8

2

1

4

3

6

5

8

7

3

4

1

2

7

8

5

6

4

3

2

1

8

7

6

5

5

6

7

8

1

2

3

4

6

5

8

7

2

1

4

3

7

8

5

6

3

4

1

2

8

7

6

5

4

3

2

1

3.

 请用分治策略设计递归的归并排序算法,并分析其时间复杂性(要求:分别给出divide、conquer、combine这三个阶段所花的时间,并在此基础上列出递归方程,最后用套用公式法求出其解的渐进阶)。

答 : Template <class Type>

void MergeSort (Type a[ ], int left, int right)     

{ if (left<right)                            

           { int i=left+right/2;               

            MergeSorta, left, i;               

            MergeSorta, i+1, right;            

            Merge(a, b, left, right);               

            Copy(a, b, left, right);                 

           }

 }

     Divide 阶段的时间复杂性:    O(1)          

     Conquer阶段的时间复杂性:   2T(n)          

     Combine阶段的时间复杂性:  Θ(n)          

                                               

    用套用公式法:a=2, b=2, nlog ba = n , f(n)=n,   因为f(n)与nlog ba 同阶,

   T(n) =Θ(nlogn)  

     4.

对下图所示的连通网络G,用克鲁斯卡尔(Kruskal)算法求G的最小生成树T,请写出在算法执行过程中,依次加入T的边集TE中的边。说明该算法的贪心策略和算法的基本思想,并简要分析算法的时间复杂度。

TE={(3,4), (2,3),(1,5),(4,6)(4,5)}   

贪心策略是每次都在连接两个不同连通分量的边中选权值最小的边。

基本思想:首先将图中所有顶点都放到生成树中,然后每次都在连接两个不同连通分量的边中选权值最小的边,将其放入生成树中,直到生成树中有n-1条边。

时间复杂度为:O(eloge)  

 5.

用动态规划策略求解最长公共子序列问题:

   (1)给出计算最优值的递归方程。

   (2)给定两个序列X={B,C,D,A},Y={A,B,C,B},请采用动态规划策略求出其最长公共子序列,要求给出过程。

(1)

                                        

                                        

                                       

                                          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值