一、系统背景与意义
长沙作为湖南省的省会城市,拥有丰富的旅游资源,包括自然风光、历史文化、美食等。然而,随着旅游业的快速发展和游客需求的日益多样化,如何为游客提供个性化的景点推荐服务成为了一个重要的问题。基于Python大数据的长沙旅游景点推荐系统正是为了解决这一问题而开发的,它能够根据游客的历史行为、偏好以及当前的旅游趋势,为游客提供个性化的景点推荐服务,提高游客的旅游体验和满意度。
二、系统架构与技术栈
系统架构:
数据采集层:通过爬虫技术从长沙地区的旅游网站、社交媒体、旅游攻略网站等数据源采集相关的景点数据,包括景点名称、位置、开放时间、门票价格、游客评价等。
数据处理层:利用Python的数据处理和分析库(如Pandas、NumPy等)对采集到的数据进行清洗、整合、转换和存储,形成结构化的景点数据集。
数据分析层:运用大数据分析和机器学习算法(如协同过滤、内容推荐等)对处理后的景点数据进行深入分析,挖掘景点之间的关联性和游客的偏好。
推荐算法层:根据数据分析的结果,设计并实现个性化的推荐算法,为游客提供精准的景点推荐服务。
用户交互层:提供用户注册、登录、浏览推荐结果、评价景点等功能,实现与用户的交互。
技术栈:
开发语言:Python,以其简洁的语法、强大的功能和丰富的第三方库而广受开发者喜爱。
数据处理库:Pandas、NumPy等,用于数据清洗、处理和矩阵运算。
数据分析库:Scikit-learn、TensorFlow等,提供了丰富的机器学习算法和工具。
可视化库:Matplotlib、Seaborn等,用于绘制图表和地图,展示景点分布和推荐结果。
Web框架:Django、Flask等,用于构建系统的用户界面和API接口。
数据库:MySQL、PostgreSQL等,用于存储和管理景点数据。
部分代码
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {
'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas