数学建模强化宝典(14)Fisher 最优分割法

前言

       Fisher最优分割法是一种对有序样品进行聚类的方法,它在分类过程中不允许打破样品的顺序。这种方法的目标是找到一种分割方式,使得各段内样品之间的差异最小,而各段之间的差异最大。以下是关于Fisher最优分割法的详细介绍:

一、概念与原理

  • 定义:Fisher最优分割法通过对有序样品的离差平方和进行计算,确定最优的分类数,使得同类样本间的差异最小,各类别样本间的差异最大。
  • 核心指标:离差平方和(即组内样本的方差)是衡量同类样本之间差异程度的重要指标。
  • 优化目标:找到一种分割方法,使得损失函数(通常定义为各段离差平方和的总和)达到最小。

二、计算流程

Fisher最优分割法的计算流程大致如下:

  1. 数据准备:确保样品数据是有序的,并按顺序排列。
  2. 计算损失函数
    • 定义损失函数为各段离差平方和的总和。
    • 对于每个可能的分割点,计算将样品分割成若干段后的损失函数值。
  3. 寻找最优分割
    • 通过迭代计算,找到使损失函数达到最小的分割方法。
    • 通常采用动态规划的方法,从将全部样品视为一段开始,逐步增加分类数,直到找到最优解。
  4. <
Fisher最优分割法(Matlab)是一种模式识别应用中常用的算法。它是对线性可分问题的非迭代解法,通过将高维特征空间中的样本投影到一条直线上,实现从高维到一维的数据压缩。该算法的核心思想是通过最大化类间距和最小化类内距的方式来确定最佳的投影方向。在投影后的直线上,如果训练样本具有很好的分布,则可以通过简单的操作实现对输入样本的分类。 为了获取最佳投影方向,Fisher最优分割法引入了准则函数。其中,类间离散度和类内离散度是两个关键概念。类间离散度是指不同类别样本均值的差别应尽可能大,而类内离散度是指相同类别样本均值的方差应尽可能小。 在投影后的情况下,两个类别的类间离散度可以表示为投影后的均值差的平方,即∣m_yi−m_yj∣2=WTSbW。其中Sb是投影前两个类别的类间离散度矩阵。 因此,Fisher最优分割法(Matlab)可以通过求解准则函数的最大值来确定最佳的投影方向。在实际应用中,可以使用Matlab代码来实现该算法并进行分类任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Fisher最优求解算法Matlab代码](https://download.csdn.net/download/a429051366/5907141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Fisher算法及其MATLAB实现](https://blog.csdn.net/weixin_41978683/article/details/106311802)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT 青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值