前言
Fisher最优分割法是一种对有序样品进行聚类的方法,它在分类过程中不允许打破样品的顺序。这种方法的目标是找到一种分割方式,使得各段内样品之间的差异最小,而各段之间的差异最大。以下是关于Fisher最优分割法的详细介绍:
一、概念与原理
- 定义:Fisher最优分割法通过对有序样品的离差平方和进行计算,确定最优的分类数,使得同类样本间的差异最小,各类别样本间的差异最大。
- 核心指标:离差平方和(即组内样本的方差)是衡量同类样本之间差异程度的重要指标。
- 优化目标:找到一种分割方法,使得损失函数(通常定义为各段离差平方和的总和)达到最小。
二、计算流程
Fisher最优分割法的计算流程大致如下:
- 数据准备:确保样品数据是有序的,并按顺序排列。
- 计算损失函数:
- 定义损失函数为各段离差平方和的总和。
- 对于每个可能的分割点,计算将样品分割成若干段后的损失函数值。
- 寻找最优分割:
<
- 通过迭代计算,找到使损失函数达到最小的分割方法。
- 通常采用动态规划的方法,从将全部样品视为一段开始,逐步增加分类数,直到找到最优解。