前言:
从昨天晚上11点开始,就有朋友问我怎么看manus,我刚开始都愣住了,这是啥,我脑子里没有这个关键词啊? 点开群和朋友圈才知道,原来是Monica团队发布了一个新产品,叫Manus。
自从上次梳理过DeepSeek-R1的时间线之后,我对于这些时间线都非常敏感,所以这个帖子,我先简单说一下我的判断,再附上一些我认为靠谱的报道和整理。 最后,根据小珺的播客,梳理一下他们的时间线,让大家可以有更多的谈资。
我的基本判断:
PS:到目前为止,我没有实测过,所有的信息都是从他们官方的网站示例,和实测过的博主帖子中拿到的信息,判断有误以实测为准;
- Manus打通了虚拟服务器(OS Call)-浏览器访问(Chrome Call)-本地文件操作-代码环境配置-代码执行-网页前端渲染(artifacts);这里的工程量我是想象不出来有多大,我甚至都拆解不出来完整的技术路线。我印象中,之前智谱也做过类似的尝试,但他们当时的案例选择,没有像manus这样直击用户本质。一句话让AI点个外卖,这种任务实在有点抽象。
- Manus将一个抽象的任务,能够拆解成十个左右的子任务,然后每个子任务仍然有多个步骤,每个case,都有大几十个的操作步骤,要确保都执行成功,最终任务才能成功。做过顺序决策的人,都知道这里面的门道有多深。从后面大家直播演示的效果来看,有不少任务,都是四五个小时起步,一些开放性的任务,仍然难以快速执行成功,所以后面大家使用这类任务的时候,仍然得看工作流是否在他们预设的一些舒适区。PS:对于工具来说,大家不要说它哪儿哪儿不好,要看它到底在哪些地方真的能解决你的痛点,要关注有用的地方。
- 再然后就是浏览器的操作,我看赛博禅心的评测,最后提到,对于一些网页的自动化验证,会有失败,仍然需要人类参与。
- 适用的场景:他们自己展示了六类场景,五类生产力,加一个抽象整活。前五个是对大家震撼最大的一个点,现代打工人,经常处于两个极端,有些朋友会认为AI可以让自己更好的摸鱼,也有人会认为,AI会直接减少就业岗位,直接没鱼可摸。今天早上传播度最广的case之一,就是一句话生成十页小米Su7的PPT
我认为这个审美的能力,应该是来自于3.7
5. 一些有趣的细节:
注意看!这里是执行命令,查看系统是否有环境依赖,然后再执行下一步动作,这个属实有点智能了!
浏览器的一些基本报错,也能处理。
从小道消息来看,他们不仅对容器化,浏览器AI化很擅长,他们可能还做了模型的RL训练。这种多步交互,且有明确的奖励指标的任务,用RL也确实适合,图灵奖的含金量又提升了。
为什么Manus一天就破圈了?
先说是不是,我认为是。 我们看数据:
不到24小时,拿下知乎热榜第一,千万热度
微信指数没有更新到最新的,但从我的群聊,朋友圈,朋友私信我的情况下,我认为是破圈了的。 推那边的破圈贴不算多,我粗略看了一眼,大概没有破百万;B站也是类似;
所以我认为他们主要的宣发在微信和红薯,AI圈的KOL基本上都拿到了邀请码(卑微,我还没有)。
关于他们Manus的一些基本时间线:
- 3.3号,张小珺的发布播客:对Manus创始人肖弘的3小时访谈:世界不是线性外推.张小珺
- 3.5号,晚上一个视频号宣传,然后朋友圈和群里流传一个测试case的链接回放,并且有一张超过openai DeepResearch的对比图。
- 3.6号,大家都在想求一个邀请码,到3.6号主流的AI自媒体通稿宣传,非常猛的一套增长打法。但这事实上也造成了饥饿营销的印象,并引发一些负面质疑,这时候联创张涛也做了一个声明:
关于团队成员:
前段时间DeepSeek-R1爆火的时候,大家都在传一个非常干货的课程:最好的致敬是学习:DeepSeek-R1 赏析,这个作者就是张涛。下面贴一个更为详细的资料:
从这里看到,除了张涛之外,季逸超的履历也非常猛,一直都是在做浏览器,AI浏览器,到现在终于大成。 最后介绍一下创始人肖弘,都是公开信息的整理,主要信息来自于小珺的播客:
肖弘的成长时间线:
2011-2015年:大学阶段
- 2011年:进入华中科技大学,参与技术社团(联创团队)和校园新媒体运营,积累技术及产品经验。
- 2015年1月:未毕业即注册第一家公司,尝试校园匿名社交、二手集市等方向,但未成功。
- 2015年6月:正式毕业,全职投入创业。
2015-2020年:第一次创业(ToB SaaS)
- 2015-2016年:多次试错失败后,转向微信生态工具开发。
- 2016年:推出微信公众号编辑器,实现数百万用户增长,成为公司核心产品。
- 2019年:孵化企业微信SCRM产品,通过互联网方式快速获客。
- 2020年:因资本环境变化和融资劣势,将公司打包出售给独角兽企业。
2022年至今:第二次创业(AI应用公司“蝴蝶效应”)
- 2022年6月:创立公司,定位海外AI工具市场,推出浏览器插件产品“Monica”。
- 2023年:收购海外独立开发者的“ChatGPT for Google”插件,加速用户冷启动。
- 2023-2024年:聚焦多模型集成与全球化运营,用户量突破百万,并且快速实现正向营收。
- 2025年:开发Agent产品,探索AI自动执行任务的下一代形态,也就是今天的Manus。
重大决策与决策逻辑
1. 选择留在武汉创业
- 决策背景:早期团队未毕业,武汉生活成本低,且熟悉本地环境。
- 逻辑:
- 成本优势:武汉工程师薪资低于一线城市,适合ToB SaaS的利润结构。
- 出海战略:若定位全球化市场,地理位置影响较小,可通过线上协作弥补资源短板。
2. 转向微信生态工具开发
- 决策背景:早期创业失败后,发现微信生态的编辑需求未被满足。
- 逻辑:
- 用户需求:公众号运营者需要排版、数据统计等工具,市场空白明显。
- 团队能力:大学期间运营公众号的经验与技术社团资源形成优势组合。经历过的事情,都能为后面的决策积累优势。
3. 提前预判企业微信生态机会
- 决策背景:2019年观察到个人微信外挂泛滥,预判企业微信将开放互通接口。
- 逻辑:
- 平台治理必然性:腾讯必会打击外挂,合规的SCRM工具将承接需求。
- 窗口期红利:提前开发产品,抢占外挂被禁后的用户迁移红利。信息和认知,可以让他们打出提前量
4. 第二次创业选择AI应用而非大模型
- 决策背景:2022年大模型热潮中,选择基于各家模型的API开发工具,并且以浏览器插件为起手。
- 逻辑:
- 资源禀赋:团队擅长工具产品开发,而非底层技术研发,团队规模较小,难以承担基座模型的研发,但提前占据大厂和基模团队没法做的生态位,满足用户的需求。
- 市场趋势:模型能力将逐步“商品化”,应用层竞争取决于用户体验与场景适配,他们的团队决策速度要远高于上述团队,因此可以更加精准的满足用户的痛点。
5. 收购ChatGPT for Google插件
- 决策背景:2023年ChatGPT引爆全球,但原厂产品体验单一。
- 逻辑:
- 冷启动加速:通过收购快速获取用户,缩短市场验证周期,他们太会做增长了,打出关键操作,花小钱办大事。
6. 押注Agent产品
- 决策背景:2024年模型能力外溢,AI可调用工具执行复杂任务。
- 逻辑:
- 技术拐点:Claude 3.5等模型已具备长程规划能力,支持多步任务执行。
- 用户需求升级:从问答转向自动化服务,需重新定义产品交互形态(如异步任务、进度反馈)
总结:
AI领域,真是勃勃生机,万物竟发的状态。 大家总归是要思考一下,在这样的新变化下,自己该如何快速适应新版本了。《LLM项目+学习笔记+电子书籍+学习视频》已经整理好,还有完整版的大模型 AI 学习资料,朋友们如果需要可以点个小小的关注+留言000,勉费发给大家【保证100%免费
】👇👇