题目描述:
给你两个字符串 haystack
和 needle
,请你在 haystack
字符串中找出 needle
字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle
不是 haystack
的一部分,则返回 -1
。
示例 1:
输入:haystack = "sadbutsad", needle = "sad" 输出:0 解释:"sad" 在下标 0 和 6 处匹配。 第一个匹配项的下标是 0 ,所以返回 0 。
示例 2:
输入:haystack = "leetcode", needle = "leeto" 输出:-1 解释:"leeto" 没有在 "leetcode" 中出现,所以返回 -1 。
提示:
1 <= haystack.length, needle.length <= 104
haystack
和needle
仅由小写英文字符组成
题目分析:
就是给你一个字符串s和一个模式串t,判断字符串s里能不能找到模式串t,能的话返回第一次出现的下标,不能的话返回-1。
方法一(暴力算法):
我们可以让字符串 S与字符串 T 的所有长度为 m 的子串均匹配一次(m为T的子串)。
为了减少不必要的匹配,我们每次匹配失败即立刻停止当前子串的匹配,对下一个子串继续匹配。如果当前子串匹配成功,我们返回当前子串的开始位置即可。如果所有子串都匹配失败,则返回 −1。
代码:这种方法的我没写,所以我把官方题解的给复制过来了
int strStr(char* haystack, char* needle) {
int n = strlen(haystack), m = strlen(needle);
for (int i = 0; i + m <= n; i++) {
bool flag = true;
for (int j = 0; j < m; j++) {
if (haystack[i + j] != needle[j]) {
flag = false;
break;
}
}
if (flag) {
return i;
}
}
return -1;
}
方法二:KMP算法(只有代码):
这是由三个大佬想出来的一种模式匹配法。这是对暴力算法的改进。
在用暴力算法时,我们刚开始用i,j指向主串和模式串的第一个字符。如果S[i]==T[j],i、j都后移;如果S[i]!=S[j],i=i-j+1,j=0;。即相等时往后移,不相等时j回到0,i回到上一次开始匹配的后面。所以那三个大佬就会想,我每次失配的时候i都要回溯,如果可以不回溯的话,时间会不会快很多?
反正这个算法的核心就是利用主串和模式串在失配那个为止前的能匹配的字符的前后缀关系,避免了i的回溯。
下面是官方题解。
int strStr(char* haystack, char* needle) {
int n = strlen(haystack), m = strlen(needle);
if (m == 0) {
return 0;
}
int pi[m];
pi[0] = 0;
for (int i = 1, j = 0; i < m; i++) {
while (j > 0 && needle[i] != needle[j]) {
j = pi[j - 1];
}
if (needle[i] == needle[j]) {
j++;
}
pi[i] = j;
}
for (int i = 0, j = 0; i < n; i++) {
while (j > 0 && haystack[i] != needle[j]) {
j = pi[j - 1];
}
if (haystack[i] == needle[j]) {
j++;
}
if (j == m) {
return i - m + 1;
}
}
return -1;
}
方法四(库函数):
c语言有个包含在头文件string.h里的函数char* strstr(const char* str1,const char* str2);它的作用就是找字符串str1中有没有字符串str2,如果有,它会返回第一次出现的位置,如果没有,就返回空。不会还有人不知道这个函数吧????
代码:
int strStr(char * haystack, char * needle){
char *p;
if( (p=strstr(haystack,needle)) )
return p-haystack;
return -1;
}