- 博客(57)
- 收藏
- 关注
原创 深度学习基础概念【持续更新】
类比通道数黑白照片1彩色照片(RGB)3网络中一层输出可为 16、32、64... 任意数量,表示提取了多少种特征。
2025-09-05 12:07:26
284
原创 容器的定义及工作原理
你可以把容器想象成一个“打包好的软件快递箱”。里面有什么?这个箱子里不仅装着你的软件(比如一个网站程序),还把软件运行所需要的所有东西都打包进去了,比如它需要哪个版本的Python、需要哪些系统文件、配置文件等等。有什么好处?这样一来,无论这个“快递箱”被送到哪里(比如同事的电脑、公司的测试服务器、或者云服务器),只要那里能打开这种“箱子”,里面的软件就能一模一样、丝毫不差地运行起来。彻底解决了“在我电脑上好使,在你那就报错”的问题。和虚拟机的区别?
2025-09-05 11:49:17
633
原创 ping命令相关概念及原理
摘要: ping是用于测试网络连接的命令,通过发送ICMP数据包检测目标主机是否可达并测量延迟。其工作原理是向目标地址发出请求包,若收到回复则表明网络通畅,并显示响应时间(如34.1 ms)。主要用途包括检查网络连通性、服务器状态、延迟分析及故障排查。但需注意,部分服务器可能禁用ping响应。示例:ping www.baidu.com可测试与百度的连接。简言之,ping是网络诊断中"打招呼"的基础工具。(149字)
2025-07-22 09:47:41
250
原创 SSH 密钥
SSH密钥是一种安全登录远程服务器的加密认证方式,由公钥和私钥组成。公钥存放在服务器上,私钥保存在本地电脑。使用时系统自动验证密钥对,无需输入密码即可登录。相比传统密码登录,SSH密钥更安全(防暴力破解)、更方便(免密登录),适用于服务器管理、自动化运维和Git代码推送等场景。通过非对称加密技术,SSH密钥实现了高效安全的远程访问控制。
2025-07-19 16:42:34
380
原创 WSL的功能及用途
WSL(Windows Subsystem for Linux)是微软开发的工具,允许用户在Windows系统中直接运行Linux环境。它支持运行Linux命令行、安装多发行版、访问Windows文件系统、使用原生Linux软件和Docker容器等功能,启动快且资源占用低。WSL适合开发Web应用、学习Linux命令、数据分析和AI开发等场景。相比虚拟机和双系统,WSL安装简单、文件互通性好,但隔离性较弱。开发者可通过PowerShell命令wsl --install快速安装,无需重启即可使用Ubuntu等
2025-07-19 15:38:51
986
原创 量化部署基本概念
本文详细介绍了神经网络模型量化部署的两种主流方法——PTQ(后训练量化)和QAT(量化感知训练)。PTQ通过直接转换浮点模型为整数模型实现快速部署,适合轻量场景;QAT在训练中模拟量化效果,精度更高但成本较大。文章提供了PyTorch框架下的完整操作流程,包括模型准备、量化配置、校准/训练和转换步骤,并对比了两者的优缺点和适用场景。最后给出了实际部署中的技巧建议,如QAT微调预训练模型、少量校准数据即可等,帮助开发者在模型体积、速度和精度之间取得平衡。
2025-06-17 15:19:02
981
原创 YOLOE详解【浅显易懂!】
YOLOE模型创新性地整合了文本与视觉提示机制,在开放世界场景中展现出强大的零样本识别能力。其核心架构包含三大关键技术:1)可重参数化的区域-文本对齐模块(RepRTA),通过文本编码器和辅助网络实现语义对齐;2)语义激活的视觉提示编码器(SAVPE),融合视觉特征的感知与语义信息;3)懒惰式区域-提示对比机制(LRPC),支持无明确提示下的对象识别。在实例分割方面,模型通过提示感知的特征增强和语义引导,显著提升了掩膜质量,特别是在零样本场景下。这些设计使YOLOE能够灵活适应文本提示、视觉提示或无提示等多
2025-06-17 14:27:41
1571
原创 实例分割各个模型发展脉络及原理详解【浅显易懂!】
实例分割技术发展历程可分为三大路线: 1)两阶段高精度路线:从Mask R-CNN(2017)到HTC(2019),通过多阶段优化提升精度; 2)一阶段轻量化路线:以YOLACT(2019)和SOLO(2020)为代表,追求实时性; 3)统一模型路线:如Mask2Former(2021)和SAM(2023),尝试统一分割任务架构。各路线在精度、速度和应用场景上各有侧重,当前趋势是探索通用模型与轻量化部署。
2025-06-17 14:14:49
1372
原创 目标检测相关【清晰易懂】
目标检测的进一步扩展,不仅定位物体的位置,而且给出物体的精确轮廓。它通常需要通过mask来标注每个物体的像素级区域。目标检测不仅检测物体的位置,还要精确预测物体的角度,通过旋转的矩形框来标注物体,而不是简单的水平矩形框。例如,在遥感卫星图像里检测船只,如果不用旋转框,可能一个框套住了两艘船。而旋转框可以斜着框住每一艘船,更准确。
2025-06-17 14:06:33
344
原创 API网关
想象一下,你有一个大房子,里面有好多房间,每个房间都有自己的门。这些房间代表不同的服务,比如一个房间是“用户管理服务”,一个房间是“订单处理服务”,还有一个房间是“支付服务”。现在,如果你想从一个房间到另一个房间,每次都直接找每个房间的门会很麻烦,对吧?这时候,API网关就像是这个大房子的“总入口”。所有的请求(比如用户想查看订单、提交订单、支付等操作)都先经过这个“总入口”,然后API网关会根据请求的内容,把请求送到正确的房间(服务)去处理。处理完之后,再把结果通过这个“总入口”返回给用户。
2025-04-01 16:18:24
261
原创 计算机视觉任务常用的性能评估指标
Rank-1:衡量模型在单次识别中的准确性。Rank-5:衡量模型在前5个结果中的识别能力。mAP:综合衡量模型在不同召回率下的整体性能。mINF:衡量模型在识别负样本时的性能。这些指标从不同角度评估模型的性能,通常在实际应用中会综合考虑这些指标来全面评估模型的效果。
2025-04-01 15:10:38
627
原创 C语言的底层属性
C语言比Python、Java、C#、Go等语言更底层,但比汇编语言更高级。它的“底层”特性使其在系统编程中不可替代,但也带来了更高的开发复杂度。,相比Python等高级语言,它更接近计算机硬件,具有更强的控制能力,但抽象程度较低。
2025-03-31 09:29:27
479
原创 反向传播算法 | 梯度消失、梯度爆炸【初学者进~】
反向传播算法:是一种训练神经网络的方法,通过计算梯度来调整网络参数,让网络更好地完成任务。梯度消失:是指梯度变得非常小,导致深层网络的训练变得困难。梯度爆炸:是指梯度变得非常大,导致训练过程不稳定。通过使用合适的激活函数、权重初始化方法和网络架构(如ResNet),可以有效缓解梯度消失和梯度爆炸问题,让神经网络训练得更稳定、更高效。
2025-03-27 09:08:52
1383
原创 Python二分查找【清晰易懂】
比如第一次猜50,如果大了,就猜25;输入: nums = [4,5,6,7,0,1,2], target = 0。输入: nums = [4,5,6,7,0,1,2], target = 3。的数字,你每次猜一个数,对方会告诉你是“大了”还是“小了”。假设一个按升序排列的数组在某个未知点进行了旋转(例如。,如果它存在于旋转后的数组中,则返回其索引,否则返回。左半部分:所有元素 ≥ 第一个元素(如。右半部分:所有元素 < 第一个元素(如。如果列表是乱序的,二分查找会失效。输出: 4(0的索引是4)
2025-03-26 15:54:38
861
原创 Spring Boot 三层架构【清晰易懂】
Spring Boot 的三层架构是一种常见的软件设计模式,它将应用程序分为三个主要部分:控制器层(Controller)、服务层(Service) 和 数据访问层(Repository)。假设我们要创建一个简单的用户管理系统,用户可以通过 HTTP 请求添加和获取用户信息。这种分层架构有助于代码的模块化和复用,使应用程序更易于维护和扩展。:数据访问层是应用程序的最内层,负责。用户的请求,并将请求转发给服务层。:服务层是应用程序的中间层,负责。,提供了基本的数据库操作方法。:处理用户请求,调用服务层。
2025-03-25 14:38:31
1424
原创 Netty 框架详解【初学者进】
Netty 使用高效的 I/O 操作,能够处理大量的网络请求,不会因为请求太多而变得很慢。:Netty 提供了简单易用的 API,让你可以快速构建网络应用程序。当有客户端连接时,服务器会创建一个新的连接,并处理客户端发送的消息。如果你想让计算机作为客户端,Netty 也可以帮你创建一个客户端。Netty 会帮你处理这些数据的传输,确保数据能够正确地到达对方。如果你想让计算机作为服务器,Netty 可以帮你创建一个服务器。,让你可以专注于应用程序的逻辑,而不用操心底层的网络细节。处理网络数据的发送和接收。
2025-03-25 09:01:40
338
原创 网络编程框架概念&作用
想象一下,你要建造一座房子,但你不想从头开始设计每一个细节,比如砖块怎么堆、门窗怎么装。你会希望有一些现成的工具和模板来帮助你更快地完成建造。网络编程框架就像是这些工具和模板,它为开发者提供了一套现成的工具和规则,帮助他们更容易地构建网络应用程序。预定义快速建立网络连接、发送和接收数据功能已经内置在框架中了业务逻辑减少错误异步处理、多线程支持、安全机制假设你要开发一个在线聊天应用程序,用户可以通过这个应用程序互相发送消息。你可以使用一个网络编程框架来帮助你实现这个功能。
2025-03-25 08:54:34
941
原创 网络编程的概念&作用
后端需要通过网络编程来接收前端发送的请求,处理这些请求,并将结果返回给前端。比如,一个在线购物网站的后端需要处理用户的订单请求,查询库存,生成订单,然后将结果返回给前端显示给用户。比如,当你提交表单时,后端会处理这些数据,保存到数据库中。比如,你在网页上填写表单,点击按钮,这些都是前端的功能。网络编程不仅仅写在后端,它也涉及到前端,但主要的功能和复杂性通常在后端实现。网络编程既涉及前端,也涉及后端,但主要的复杂性和功能通常在后端实现。:后端是运行在服务器上的部分,用户看不到,但它是整个应用程序的核心。
2025-03-24 20:50:48
422
原创 网络编程和计算机网络五层模型的关系
开发者编写的应用程序代码主要在这一层实现,例如使用HTTP协议的网页应用、使用FTP协议的文件传输应用等。例如,使用TCP来保证数据的可靠传输,使用UDP来实现低延迟的通信(如视频流)。例如,配置服务器的IP地址,或者在代码中指定目标服务器的IP地址。:链路层通常由操作系统和网络硬件(如网卡)管理,开发者很少直接操作这一层。:链路层和物理层通常由操作系统和网络硬件管理,开发者很少直接操作这些层,但了解它们的基本概念有助于理解网络通信的底层机制。:配置服务器的IP地址,或者在代码中指定目标服务器的IP地址。
2025-03-24 20:46:23
482
原创 TensorFlow和Pytorch在功能上的区别以及优势
TensorFlow更适合大规模生产环境和工业级应用,其强大的生态系统和性能优化工具使其在部署和大规模训练中表现优异。PyTorch更适合学术研究和快速开发,其动态计算图和简洁的代码风格使得研究人员和开发者能够快速实现和验证新想法。选择哪个框架取决于具体的需求和场景。如果你需要快速开发和验证模型,或者主要在学术研究中使用,PyTorch 是一个不错的选择;如果你需要在生产环境中部署模型,或者需要强大的生态系统支持,TensorFlow 可能更适合。
2025-03-21 09:40:23
1226
原创 TensorFlow的用途、框架和代码示例【清晰易懂】
TensorFlow 是一个功能强大的机器学习框架,适用于构建和训练各种深度学习模型。通过上述代码案例可以看到如何使用 TensorFlow 构建一个简单的神经网络,进行训练、评估和预测。TensorFlow 提供了丰富的工具和 API,可以帮助你轻松实现复杂的机器学习任务。
2025-03-21 09:22:20
987
原创 php的用途和基础语法【初学者进】
PHP 是一种非常强大的服务器端脚本语言,主要用于开发动态网站和 Web 应用程序。它的语法简单易懂,功能强大,非常适合初学者学习。
2025-03-20 19:21:12
1153
原创 深度学习框架【详细易懂~】
帮助开发者更高效地构建、训练和部署深度神经网络。这些框架封装了底层数学计算(如梯度计算、自动微分)和 GPU/TPU 加速功能,使研究人员和工程师能够专注于。
2025-03-19 09:25:04
837
原创 Windows 系统设置多个用户账号
每个账号可以有不同的权限。例如,管理员账号可以安装软件、更改系统设置,而标准用户账号则有更多限制。尽管每个账号相对独立,但你可以设置共享文件夹或打印机,让多个用户可以访问。每个用户账号都有自己的桌面、文件夹、设置和应用程序数据。例如,用户A的桌面背景和浏览器书签不会影响用户B的设置。在登录界面,点击用户名旁边的箭头,选择要切换的账号。这有助于保护系统安全,防止未经授权的更改。一个用户所做的更改不会影响其他用户。在Windows中,可以通过。“家庭组”或“共享文件夹”,选择“切换用户”。
2025-03-19 08:54:18
4551
原创 远程连接的原理及步骤【清晰易懂】
远程连接的底层原理基于计算机网络的分层模型和协议。它通过IP地址和端口找到目标计算机,通过TCP/IP协议确保数据的可靠传输,并通过安全机制确保连接的安全性。最终,远程连接软件将这些底层技术封装起来,让你能够轻松地控制另一台计算机。
2025-03-19 08:36:22
722
原创 深度学习定义与分类【详细易懂 初学者友好~】
一种利用多层神经网络对数据进行表示学习(Representation Learning)的机器学习方法。它通过逐层抽象和组合输入数据的特征,自动提取数据中的高级语义信息,从而实现对复杂数据模式的建模和预测。深度学习是一种强大的机器学习方法,通过构建多层神经网络自动学习数据的特征表示,能够处理复杂的模式识别和预测任务。它在多个领域取得了突破性进展,成为现代人工智能技术的核心之一。
2025-03-18 21:38:24
1798
原创 React 和 Vue 框架概念及区别
用来构建网页或应用的用户界面(UI)。它们能帮助开发者更高效地管理网页的结构、交互和数据更新,使网页变得更智能、更流畅。React 更强大但学习门槛较高,Vue 更容易上手但在超大项目中可能不如 React 灵活。,可结合多种工具使用(如 Redux)React 和 Vue 都是。,适合构建超大型应用。
2025-03-18 20:04:13
564
原创 MiDaS原理解析【单目深度估计】
MiDaS 在多个不同的数据集上进行训练,以确保在不同场景下具有。MiDaS 主要经历了多个版本的迭代,目前最新版本(解码器负责将特征图(Feature Map)转换为。(背景模糊,类似 iPhone 的“人像模式”)开发,并在多个数据集上训练,以提高泛化能力。,通过深度学习推理出深度信息,适用于。预测场景的相对深度分布。补充:单目图像与双目图像的对比。(Decoder)两个部分。(需借助已知物体进行校准)(低光环境可能影响效果)(场景建模、背景虚化)(Encoder)和。(3D CT 重建)
2025-03-17 19:12:50
2378
原创 编码器和解码器概念及算法示例【清晰易懂】
编码器(Encoder)和解码器(Decoder)在许多机器学习和深度学习模型中都有应用。以下是几个具体的算法例子,并配上它们的。编码器(Encoder)和解码器(Decoder)是处理信息的一对“搭档”,它们的作用就像是“翻译员”和“逆翻译员”。这对组合被广泛用于 AI 领域,如。编码器和解码器通常成对使用,比如。等,都是它们的“功劳”!
2025-03-17 19:11:01
1102
原创 蓝桥杯基础【暴力枚举】
暴力枚举是一种简单直接的解题方法,适用于数据规模较小的题目。通过逐个检查所有可能的情况,可以确保不遗漏任何解。在蓝桥杯等竞赛中,暴力枚举常用于一些基础题或数据范围较小的题目。
2025-03-16 21:05:11
596
原创 常见的数学模型
在长句子中,有些词可能距离很远,但它们之间有重要的关系。自注意力机制可以轻松捕捉这种长距离的依赖关系,而传统的模型(如RNN)在这方面往往表现不佳。简单来说,数学模型就是用数学语言来描述现实世界中的现象或规律。它就像一个“翻译器”,把复杂的现实问题转化成我们可以用数学方法解决的问题。模型会根据当前任务动态决定每个词的重要性。重要的词会被赋予更高的权重,不太重要的词会被赋予较低的权重。自注意力机制不会逐词读取,而是同时处理整个句子或序列。这样可以更好地捕捉词与词之间的关系。常见模型的原理和用途。
2025-03-15 16:34:08
382
原创 LLM的模态融合策略
在构建这类模型时,常用的模态融合策略包括前期融合(早期融合)、中期融合(中间融合)和后期融合(晚期融合)。在实际应用中,选择哪种融合策略取决于具体任务的需求、各模态数据的特性以及计算资源的限制。此外,如果某一模态的数据质量较差,后期融合可以通过降低该模态在决策中的权重来减小其影响。具体而言,将多种模态的数据直接连接或组合成一个统一的表示,然后输入到模型中进行处理。先对每种模态的数据独立提取特征,然后在模型的中间阶段对这些特征进行融合。,因为各模态的特征是在独立处理后才进行融合的。
2025-03-10 16:42:19
526
原创 开源大模型相关概念
(Open-Source Large Model)指的是。:开发者可以改进、优化,并分享更好的版本。:可以在本地部署,无需云端调用。轻量级 GPT-4V 替代品。开源 CLIP 视觉模型。都被公开,允许开发者。,让模型适应特定任务。❌ 只能用官方 API。❌ 可能需要订阅/付费。❌ 受限,需官方授权。轻量级,适合本地部署。可本地运行的视觉对话。
2025-02-26 10:10:30
515
原创 WEB开发理论基础
网页(web page),是网站(web site)中的一页,当我们用浏览器打开一个链接地址后,就会打开该链接地址所链接的页面,这就是网页。URL是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。互联网是“网络的网络”,它把全世界无数的网络都连在了一起,形成了一个巨大的。:万维网是由无数的网页构成的,如果没有网页,就不存在万维网。),看到的网页内容就是通过万维网访问到的。
2025-01-12 10:39:15
578
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人