数据分类
整形类型
- char (1byte)
unsigned char
signed char - short (2byte)
unsigned short [int]
signed short [int] - int (4byte)
unsigned int
signed int - long (4/8byte)
unsigned long [int]
signed long [int]
浮点数类型
- float (4byte)
- double (8byte)
构造类型
- 数组类型
- 结构体类型 struct
- 枚举类型 enum
- 联合类型 union
指针类型
- int *pi;
- char *pc;
- float *pf;
- void * pv;
原码,反码,补码
计算机中整数有三种2进制表示方法,即原码,反码,补码
三种表示方法 均有符号位和数值位两部分,符号位“0”表示“正”,“1”表示“负”。
正数:原、反、补码都相同
负数:(1)原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码; (2)反码:将原码的符号位不变,其他位依次按位取反就可以得到反码; (3)补码:反码+1得到补码 (4)补码到原码:①补码 -1,再取反(符号位不变)得原码 ②补码取反(符号位不变),再+1得原码
对整形来说,数据存放在内存中放的是补码。因为使用补码可以将符号位和数值域统一处理,同时加减法也可以统一处理,此外,补码和原码可以相互转换,其运算过程是相同的,不需要额外的硬件电路。
例如:
int a=1,b=-1,sum=0;
sum=a+b;
//00000000000000000000000000000001 --->1的补码
//11111111111111111111111111111111 --->-1的补码
//1与-1的1补码相加得
//00000000000000000000000000000000 --->0
例题:
int main()
{
char a=-1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d b=%d c=%d",a,b,c);
return 0;
}
答案:
解析:
第一步:
10000000000000000000000000000001 --> -1的原码
11111111111111111111111111111110 --> -1的反码
11111111111111111111111111111111 --> -1的补码
第二步:
由于char类型是8 bit 发生截断,取补码的后八位
11111111
第三步:
由于输出处是%d,即int 类型 32 bit 又需发生整型提升
对于signed char,有符号发生整型提升时,高位补符号位
11111111111111111111111111111111
对于char 默认为有符号,和signed char相同
对于unsigned char,无符号发生整型提升时,高位补0
00000000000000000000000011111111
第四补:
将补码转换为原码输出
char 和 signed char 负数补码变原码:补码-1,所有位取反,符号位不变得原码
10000000000000000000000000000001 --> -1
unsigned char 正数不变,原、补码相同
00000000000000000000000001111111 --> 255
大小端
- 什么是大端小端:
大端存储:数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端存储:数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。 - 为什么会有大端和小端:
计算机内以字节为单位,每个地址单元对应一个字节,一个字节8 bit,但C语言中除了8 bit 的char,还有16 bit 的short型,32 bit的long型,另外,对于位数大于8位的处理器,由于寄存器宽度大于一个字节,那么必然存在着如何将多个字节1安排的问题,因此就导致了大端存储模式和小段存储模式。
设计一个代码判断是大端存储还是小端存储
int main()
{
int a=1;
char* p=(char*)&a;//将a强制类型转换为char,*与&抵消
if(*p==1)//p代表第一个字节,是低地址
printf(“小端\n”);
else
printf("大端\n”);
return 0;
浮点型在内存中的存储
浮点数家族包括:float、double、long double 类型
浮点数表示的范围:float.h 中定义
整型和浮点型在内存中的存储有差异
浮点数在计算机内部的表示方法:
根据国际标准IEEE754,任意一个二进制浮点数 V 可以表示成下面的形式:
•(-1)^S * M 2^E
•(-1)^S 表示符号位,当S=0,V为正数;当S=1,V为负数
• M 表示有效数字,大于等于1,小于2
• 2^E表示指数位
如:十进制 5.5 用二进制表示为 101.1,标准形式为:1.011* 2^2 ,其中S=0,M=1.011,E=2
对于32位的浮点数,最高的1位是符号位 S,接着的8位是指数 E,剩下的23位为有效数字 M。
对于64位的浮点数,最高1位是符号位 S,接着的11位是指数 E,剩下是我52位为有效数字 M。
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分
IEEE 754规定,在计算机内部保存 M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给 M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字
至于指数E,情况就比较复杂
首先,E为一个无符号整数 (unsigned int) 这意味着,如果 E为8位,它的取值范围为0-255;如果 E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的 E是可以出现负数的(如:十进制0.5表示为二进制0.1,标准表达为 (-1) ^0 * 1.0 *2^-1,其中 E为-1),所以IEEE 754规定,存入内存时 E的真实值必须再加上一个中间数,对于8位的 E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:
- E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127 (或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000 - E全为0
这时,浮点数的指数E等于1-127 (或者1-1023) 即为真实值,有效数字 M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示 ±0,以及接近于0的很小的数字。 - E全为1
这时如果有效数字 M全为0,表示 ±无穷大(正负取决于符号位S)
思考下列代码结果
int main()
{
int n=9;
float* pfloat=(float*)&n;
printf("n的值为:%d\n",n);
printf("*pfloat的值为:&f\n",*pfloat);
*pfloat=9.0;
printf("n的值为:%d\n",n);
printf("pfloat的值为:%f\n",*pfloat);
return 0;
}
结果:
分析:
//*pfloat值解析:
00000000000000000000000000001001 --> n=9的原码
将n强制类型转换成float型后,计算机认为内存中存的是浮点数,即
0 00000000 000000000000000001001
S E M
0 -126 0.000000000000000001001
标准形式为:(-1)^0*0.000000000000000001001*2^-126
所以输出时小数部分保留6位为0.000000
//n值解析:
1001.0 --> *pfloat=9.0的原码
1.001*2^3
(-1)^0*1.001*2^3
S=0 E=3 M=1.001
0 10000010 01100000000000000000000 -->内存中的存储形式
此时以int的类型取出,认为是整型的存储方式
01000001001100000000000000000000 -->值为1091567616