数据结构初级<树和二叉树的概念>

本文详细介绍了树和二叉树的基本概念,包括节点的度、叶节点、分支节点、父节点、子节点、兄弟节点等,并探讨了满二叉树和完全二叉树的特性。此外,还讲解了树的存储结构,如孩子兄弟表示法,以及二叉树的顺序存储和链式存储。内容深入浅出,是理解数据结构中树与二叉树的重要参考资料。
摘要由CSDN通过智能技术生成

 本文已收录至《数据结构(C/C++语言)》专栏!

作者:ARMCSKGT


目录

前言 

正文

树的概念

树的相关概念

树的表示

二叉树

二叉树的概念

特殊的二叉树

 二叉树的一些性质

 二叉树的存储结构

最后


前言 

前面我们介绍了线性表,线性表的元素相互之间存在一对一的关系,那么我们本篇将介绍非线性结构的一种“树”,以及树的常用形式“二叉树”的概念。


正文


树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

树有一个特殊的节点,成为根节点,根节点没有前驱(如上图中红色的节)!

除根节点外,其余节点被分成了N(N>0)个互不相交的集合,其中某一个集合都是一棵结构与树类似的子树。

每一棵树有且只有一个前驱,可以有0到多个后继!

综上可以发现树是递归定义的,因为随着向下逐渐递进,才能访问到所有节点。

这里要说明一点的是树形结构之间不能有交集,否则就不是树形结构,因为形成了环,会变化成为图!


树的相关概念

示例图
节点的度一个节点含有的子树的个数称为该节点的度。

如示例图:

1节点的为度为6,6节点的度为3。

叶节点(或终端节点)度为0的节点称为叶节点

如示例图:

8节点,9节点,15节点等。

分支节点(或非终端节点)度不为0的节点

如示例图:

4节点,5节点,10节点等。

父节点(或双亲节点)若一个节点含有子节点,则这个节点称为其子节点的父节点

如示例图:

4节点是8节点的父节点,1节点是5节点的父节点等。

子节点(或孩子节点)一个节点含有的子树的根节点称为该节点的子节点。

如示例图:

16节点是10节点的孩子节点,6节点是1节点的孩子节点等。

兄弟节点具有相同父节点的节点互称为兄弟节点。

如示例图:

11,12,13节点互为兄弟节点,15,16节点互为兄弟节点等。

树的度一棵树中,最大的节点的度称为树的度。

如示例图:

树的度为6。

节点的层次从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

如示例图:

8节点在第三层,6节点在第二层等。

树的高度(或深度)树中节点的最大层次

如示例图:

树的高度为4。

堂兄弟节点双亲在同一层的节点互为堂兄弟。

如示例图:

8,9,11节点互为堂兄弟,13,14节点互为堂兄弟等。

节点的祖先从根到该节点所经分支上的所有节点。

如示例图:

1节点是所有节点的祖先。

子孙节点以某节点为根的子树中任一节点都称为该节点的子孙。

如示例图:

所有节点都是A的子孙。

森林由m(m>0)棵互不相交的树的集合称为森林。

例如图中由四棵树组成了森林


树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

孩子兄弟表示法是一个节点中有两个指针,一个指针指向孩子节点,另一个指针指向兄弟节点。

孩子兄弟表示法

 树的孩子兄弟表示法存储结构:

typedef int DataType;
struct Node
{
    DataType data; // 结点中的数据域
    struct Node* Child; // 第一个孩子结点
    struct Node* Brother; // 指向其下一个兄弟结点
};

二叉树


二叉树的概念

一棵二叉树是结点的一个有限集合,该集合为空或者由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图中可以发现:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

 对于任何一棵二叉树,都由以下以下几种情况复合而成:


特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k)-1 ,则它就是满二叉树。

  

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一 一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

 二叉树的一些性质

在用顺序存储表示二叉树(堆)中,对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

2. 若2i+1<n,左孩子下标:2i+1,2i+1>=n,否则无左孩子。

3. 若2i+2<n,右孩子下标:2i+2,2i+2>=n,否则无右孩子。


 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树

 堆的存储结构:

//堆的存储结构
typedef int HPDataType;

typedef struct Heap
{
	HPDataType* a;//顺序存储首地址
	int size;//节点个数
	int capacity;//当前空间大小
}Heap;

  

2. 链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链三叉链。

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* leftchild; // 指向当前节点左孩子
    struct BinTreeNode* rightchild; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};

// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* Parent; // 指向当前节点的双亲(父节点)
    struct BinTreeNode* leftchild; // 指向当前节点左孩子
    struct BinTreeNode* rightchild; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};

最后

本篇介绍了树和二叉树的相关概念,这对于我们后面实现二叉树以及分析二叉树的相关习题有极大的帮助,所以是我们必须了解和掌握的。

本次队树和二叉树的概念介绍就到这里啦,希望能够尽可能帮助到大家。

如果文章中有瑕疵,还请各位大佬细心点评和留言,我将立即修补错误,谢谢!

🌟其他文章阅读推荐🌟

数据结构初级<队列>-CSDN博客

数据结构初级<栈>-CSDN博客

数据结构初级<循环队列>-CSDN博客

🌹欢迎读者多多浏览多多支持!🌹

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ARMCSKGT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值