字符串哈希
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e4 + 10;
ULL h[N];
ULL ha(string s) {
ULL p = 131, res = 0;
int len = s.length();
for (int i = 0; i < len; ++i) {
res = res * p + s[i] - '0';
}
return res;
}
void solve() {
int n,ans=0;
cin >> n;
for (int i = 1; i <= n; ++i) {
string s;
cin >> s;
h[i] = ha(s);
}
sort(h + 1, h + n + 1);
for (int i = 1; i <= n; ++i) {
if (h[i] != h[i + 1]) ans++;
}
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
Manacher算法
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
const LL N = 22e6 + 10;
char b[N];
int R[N];
void solve() {
string s;
cin >> s;
int l = s.length(),len=0;
b[0] = '~';
for (int i = 0; i < l; ++i) {
b[++len] = '|';
b[++len] = s[i];
}
b[++len] = '|';
int mid = 0, r = 0;
for (int i = 1; i <= len; ++i) {
if (i > r) {
for (int j = 1; i - j > 0 && i + j <= len; ++j) {
if (b[i - j] == b[i + j]) R[i]++;
else break;
}
mid = i;
r = mid + R[i];
}
else {
R[i] = min(R[2 * mid - i], r - i);
for (int j = R[i] + 1; i - j > 0 && i + j <= len; ++j) {
if (b[i - j] == b[i + j]) R[i]++;
else break;
}
if (i + R[i] > r) {
mid = i;
r = mid + R[i];
}
}
}
int ans = 0;
for (int i = 1; i <= len; ++i) {
ans = max(ans, R[i]);
}
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
字典树
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
const LL N = 3e6 + 10;
int trie[N][70], cnt[N], id;
void insert(string s) {
int p = 0;
int len = s.length();
int temp;
for (int i = 0; i < len; ++i) {
if (isdigit(s[i])) temp = s[i] - '0';
else if (isupper(s[i])) temp = s[i] - 'A' + 10;
else temp = s[i] - 'a' + 36;
if (trie[p][temp] == 0) trie[p][temp] = ++id;
p = trie[p][temp];
cnt[p]++;
}
}
int find(string s) {
int p = 0;
int len = s.length();
int temp;
for (int i = 0; i < len; ++i) {
if (isdigit(s[i])) temp = s[i] - '0';
else if (isupper(s[i])) temp = s[i] - 'A' + 10;
else temp = s[i] - 'a' + 36;
if (trie[p][temp] == 0) return 0;
p = trie[p][temp];
}
return cnt[p];
}
void solve() {
for (int i = 0; i <= id; ++i) {
cnt[i] = 0;
for (int j = 0; j <= 70; ++j) {
trie[i][j] = 0;
}
}
id = 0;
int n, q;
cin >> n >> q;;
for (int i = 1; i <= n; ++i) {
string s;
cin >> s;
insert(s);
}
for (int i = 1; i <= q; ++i) {
string s;
cin >> s;
cout << find(s) << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
//_t = 1;
cin >> _t;
while (_t--) {
solve();
}
return 0;
}
KMP算法
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
string s1, s2;
int len1, len2,n[N],sum=0,ans[N];
void creatnext() {
int j = 0, k = -1;
n[0] = -1;
while (j <= len2 - 1) {
if (k == -1 || s2[k] == s2[j]) {
j++;
k++;
//if (p[k] != p[j]) n[j] = k;
//else n[j] = n[k];
n[j] = k;
}
else k = n[k];
}
}
void kmp() {
int i = 0, j = 0;
while (i <len1) {
if (j == -1 || s1[i] == s2[j]) {
j++;
i++;
}
else j = n[j];
if (j == len2) {
ans[++sum] = i - len2 + 1;
j = n[j];
}
}
}
void solve() {
cin >> s1 >> s2;
len1 = s1.length();
len2 = s2.length();
creatnext();
kmp();
for (int i = 1; i <= sum; ++i) cout << ans[i] << '\n';
for (int i = 1; i <= len2; ++i) {
if (n[i] == -1) n[i] = 0;
cout << n[i] << " ";
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
扩展KMP
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 2e7 + 10;
int nxt[N], ex[N], lena, lenb;
string a, b;
void creatnext() {
int p = 0, k = 1, l;
nxt[0] = lenb;
while (p + 1 < lenb && b[p] == b[p + 1]) p++;
nxt[1] = p;
for (int i = 2; i < lenb; ++i) {
p = k + nxt[k] - 1;
l = nxt[i - k];
if (i + l <= p) nxt[i] = l;
else {
int j = max(0, p - i + 1);
while (i + j < lenb && b[j] == b[i + j]) j++;
nxt[i] = j;
k = i;
}
}
}
void exkmp() {
int p = 0, k = 0, l;
while (p < lena && p < lenb && a[p] == b[p]) p++;
ex[0] = p;
for (int i = 1; i < lena; ++i) {
p = k + ex[k] - 1;
l = nxt[i - k];
if (i + l <= p) ex[i] = l;
else {
int j = max(0, p - i + 1);
while (i + j < lena && j < lenb && b[j] == a[i + j]) j++;
ex[i] = j;
k = i;
}
}
}
void solve() {
cin >> a >> b;
lena = a.length(), lenb = b.length();
creatnext();
LL ans = 0;
for (int i = 0; i < lenb; ++i) ans ^= 1LL * (i + 1) * (nxt[i] + 1);
cout << ans << '\n';
exkmp();
ans = 0;
for (int i = 0; i < lena; ++i) ans ^= 1LL * (i + 1) * (ex[i] + 1);
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
AC自动机
#include <iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
const LL N = 1e6 + 10;
int trie[N][26], cnt[N], fail[N], id = 0, maxnum,num[N];
string ss[N];
string s;
void insert(string s) {
int p = 0;
int len = s.size();
for (int i = 0; i < len; ++i) {
int temp = s[i] - 'a';
if (trie[p][temp] == 0) {
trie[p][temp] = ++id;
}
p = trie[p][temp];
}
cnt[p]++;
ss[p] = s;
}
void creatfail() {
queue<int> q;
int p = 0;
for (int i = 0; i <= 25; ++i) {
if (trie[p][i]) q.push(trie[p][i]);
}
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = 0; i <= 25; ++i) {
if (trie[u][i]) {
fail[trie[u][i]] = trie[fail[u]][i];
q.push(trie[u][i]);
}
else trie[u][i] = trie[fail[u]][i];
}
}
}
void query(string s) {
int p = 0;
int len = s.size();
for (int i = 0; i < len; ++i) {
int temp = s[i] - 'a';
p = trie[p][temp];
for (int j = p; j != 0 ; j = fail[j]) {
if (cnt[j]) {
num[j]++;
if (num[j] > maxnum) {
maxnum = num[j];
}
}
}
}
}
void solve() {
while (1) {
int n;
cin >> n;
if (n == 0) break;
for (int i = 0; i <= id; ++i) {
cnt[i] = fail[i] =num[i] = 0;
for (int j = 0; j <= 25; ++j) {
trie[i][j] = 0;
}
}
id =maxnum= 0;
for (int i = 0; i < n; ++i) {
cin >> s;
insert(s);
}
creatfail();
cin >> s;
query(s);
cout << maxnum << '\n';
for (int i = 1; i <= id; ++i) {
if (num[i] == maxnum) cout << ss[i] << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin >> _t;
while (_t--) {
solve();
}
return 0;
}
AC自动机优化(dfs)
此外还有拓扑排序、树上差分等做法
#include <iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
const LL N = 2e6 + 10;
int trie[N][26], cnt[N], fail[N], id = 0, num[N],MAP[N];
string s;
vector<vector<int> > v(N);
void insert(int cur,string s) {
int p = 0;
int len = s.size();
for (int i = 0; i < len; ++i) {
int temp = s[i] - 'a';
if (trie[p][temp] == 0) {
trie[p][temp] = ++id;
}
p = trie[p][temp];
}
MAP[cur] = p;
}
void creatfail() {
queue<int> q;
int p = 0;
for (int i = 0; i <= 25; ++i) {
if (trie[p][i]) q.push(trie[p][i]);
}
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = 0; i <= 25; ++i) {
if (trie[u][i]) {
fail[trie[u][i]] = trie[fail[u]][i];
q.push(trie[u][i]);
}
else trie[u][i] = trie[fail[u]][i];
}
}
}
void query(string s) {
int p = 0;
int len = s.size();
for (int i = 0; i < len; ++i) {
int temp = s[i] - 'a';
p = trie[p][temp];
num[p]++;
}
}
void build() {
for (int i = 1; i <= id; ++i) {
v[fail[i]].push_back(i);
}
}
void dfs(int u) {
for (auto i : v[u]) {
dfs(i);
num[u] += num[i];
}
}
void solve() {
int n;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> s;
insert(i,s);
}
creatfail();
cin >> s;
query(s);
build();
dfs(0);
for (int i = 0; i <n; ++i) {
cout<<num[MAP[i]] << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin >> _t;
while (_t--) {
solve();
}
return 0;
}
回文自动机
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 5e5 + 10;
int last,cnt=1,s[N];
struct node {
int len, fail, siz, son[26];
}tree[N];
int getfail(int x,int pos) {
while (pos-tree[x].len-1<0||s[pos - tree[x].len - 1] != s[pos]) x = tree[x].fail;
return x;
}
int pam(int pos) {
int fa = getfail(last, pos);
int now = tree[fa].son[s[pos]];
if (!now) {
now = ++cnt;
tree[now].fail = tree[getfail(tree[fa].fail, pos)].son[s[pos]];
tree[now].len = tree[fa].len + 2;
tree[now].siz = tree[tree[now].fail].siz + 1;
tree[fa].son[s[pos]] = now;
}
last = now;
return tree[now].siz;
}
void solve() {
string ss;
cin >> ss;
int len = ss.length(),k;
tree[0].fail = 1;
tree[1].len = -1;
for (int i = 0; i < len; ++i) {
if (!i) s[i]= ss[i]-'a';
else s[i] = (ss[i] - 'a' + k) % 26;
k = pam(i);
cout << k << " ";
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
后缀数组(sort排序)
构建
查询
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
string s;
int sa[N], rk[N],temp[N] ,k,n;
bool cmpsa(int i, int j) {
if (rk[i] != rk[j]) {
return rk[i] < rk[j];
}
else {
int ri = i + k < n ? rk[i + k] : -1;
int rj = j + k < n ? rk[j + k] : -1;
return ri < rj;
}
}
void creatsa() {
for (int i = 0; i < n; ++i) {
rk[i] = s[i];
sa[i] = i;
}
for (k = 1; k < n; k *= 2) {
sort(sa, sa + n, cmpsa);
temp[sa[0]] = 0;
for (int i = 0; i < n - 1; ++i) temp[sa[i + 1]] = temp[sa[i]] + (cmpsa(sa[i], sa[i + 1] )? 1:0);
for (int i = 0; i < n; ++i) rk[i] = temp[i];
}
}
void solve() {
cin >> s;
n = s.length();
creatsa();
for (int i = 0; i < n; ++i) cout << sa[i]+1 << " ";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
后缀数组(基数排序)
构建
查询
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
string s;
int c[N],sa[N], rk[N],tp[N] ,n,m=127;
void creatsa() {
for (int i = 0; i < n; ++i) {
rk[i] = s[i];
c[rk[i]]++;
}
for (int i = 1; i < m; ++i) c[i] += c[i - 1];
for (int i = n-1; i >=0; --i) sa[--c[rk[i]]] = i;
for (int k = 1; k < n; k *= 2) {
int num = 0;
for (int i = n - k; i < n; ++i) tp[num++] = i;
for (int i = 0; i < n; ++i) if (sa[i] >= k) tp[num++] = sa[i] - k;
for (int i = 0; i < m; ++i) c[i] = 0;
for (int i = 0; i < n; ++i) c[rk[tp[i]]]++;
for (int i = 1; i < m; ++i) c[i] += c[i - 1];
for (int i = n - 1; i >= 0; --i) sa[--c[rk[tp[i]]]] = tp[i];
num = 1;
swap(rk, tp);
rk[sa[0]] = 0;
for (int i = 1; i < n; ++i) {
num += tp[sa[i]] == tp[sa[i - 1]] && tp[sa[i]+k] == tp[sa[i - 1]+k] ? 0 : 1;
rk[sa[i]] = num-1;
}
if (num == n) return;
m = num;
}
}
void solve() {
cin >> s;
n = s.length();
creatsa();
for (int i = 0; i < n; ++i) cout << sa[i] + 1 << " ";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
求height数组
void getheight() {
int j, k = 0;
for (int i = 0; i < n; ++i) rk[sa[i]] = i;
for (int i = 0; i < n; ++i) {
if (k) k--;
if (rk[i] == 0) continue;
int j = sa[rk[i] - 1];
while (s[i + k] == s[j + k]) k++;
height[rk[i]] = k;
}
}
后缀自动机
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
struct node {
int fa, len, son[26],num;
}tree[N*2];
vector<vector<int> >e(N * 2);
int cnt = 0, last = 0;
LL ans=0;
void insert(int x) {
tree[++cnt].len=tree[last].len + 1;
tree[cnt].num = 1;
int p = last, now = cnt;
while (p != -1 && !tree[p].son[x]) {
tree[p].son[x] = now;
p = tree[p].fa;
}
if (p == -1) tree[now].fa = 0;
else {
int q = tree[p].son[x];
if (tree[q].len == tree[p].len + 1) tree[now].fa = q;
else {
tree[++cnt].len=tree[p].len + 1;
int nq = cnt;
memcpy(tree[nq].son, tree[q].son, sizeof(tree[q].son));
tree[nq].fa = tree[q].fa;
tree[now].fa = tree[q].fa = nq;
while (p != -1 && tree[p].son[x] == q) {
tree[p].son[x] = nq;
p = tree[p].fa;
}
}
}
last = now;
}
void dfs(int x) {
for (int i :e[x]) {
dfs(i);
tree[x].num += tree[i].num;
}
if(tree[x].num!=1) ans = max(ans, 1LL*tree[x].num*tree[x].len);
}
void solve() {
string s;
cin >> s;
int n = s.length();
tree[0].fa = -1;
for (int i = 0; i < n; ++i) insert(s[i] - 'a');
for (int i = 1; i <= cnt; ++i) e[tree[i].fa].push_back(i);
dfs(0);
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
广义后缀自动机(离线)
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
struct node {
int fa, len, son[26];
}tree[2 * N];
int cnt = 0, last = 0, trie[N][26], fa[N], val[N], pos[N];
void trie_insert(string s) {
int p = 0, len = s.length();
for (int i = 0; i < len; ++i) {
int x = s[i] - 'a';
if (!trie[p][x]) {
trie[p][x] = ++cnt;
fa[cnt] = p;
val[cnt] = x;
}
p = trie[p][x];
}
}
int sam_insert(int x) {
/*if (tree[last].son[x]) {
int p = last, q = tree[last].son[x];
tree[++cnt].len = tree[p].len + 1;
int nq = cnt;
memcpy(tree[nq].son, tree[q].son, sizeof(tree[q].son));
tree[nq].fa = tree[q].fa;
tree[q].fa = nq;
while (p != -1 && tree[p].son[x] == q) {
tree[p].son[x] = nq;
p = tree[p].fa;
}
return nq;
}
else {*/
tree[++cnt].len = tree[last].len + 1;
int p = last, now = cnt;
while (p != -1 && !tree[p].son[x]) {
tree[p].son[x] = now;
p = tree[p].fa;
}
if (p == -1) tree[now].fa = 0;
else {
int q = tree[p].son[x];
if (tree[q].len == tree[p].len + 1) tree[now].fa = q;
else {
tree[++cnt].len = tree[p].len + 1;
int nq = cnt;
memcpy(tree[nq].son, tree[q].son, sizeof(tree[q].son));
tree[nq].fa = tree[q].fa;
tree[now].fa = tree[q].fa = nq;
while (p != -1 && tree[p].son[x] == q) {
tree[p].son[x] = nq;
p = tree[p].fa;
}
}
}
return now;
//}
}
void dfs(int x) {
for (int i = 0; i < 26; ++i) {
if (trie[x][i]) {
int u = trie[x][i];
last = pos[fa[u]];
pos[u] = sam_insert(val[u]);
dfs(trie[x][i]);
}
}
}
void bfs() {
queue<int> q;
for (int i = 0; i < 26; ++i) if (trie[0][i]) q.push(trie[0][i]);
while (!q.empty()) {
int u = q.front();
q.pop();
last = pos[fa[u]];
pos[u] = sam_insert(val[u]);
for (int i = 0; i < 26; ++i) if (trie[u][i]) q.push(trie[u][i]);
}
}
void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; ++i) {
string s;
cin >> s;
trie_insert(s);
}
cnt = 0;
tree[0].fa = -1;
//dfs(0);
bfs();
LL ans = 0;
for (int i = 1; i <= cnt; ++i) ans += tree[i].len - tree[tree[i].fa].len;
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
广义后缀自动机(在线)
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define P pair<int,int>
const double eps = 1e-8;
const LL INF = 1e18;
const LL N = 1e6 + 10;
struct node {
int fa, len, son[26];
}tree[2 * N];
int cnt = 0, last = 0;
void insert(int x) {
if (tree[last].son[x]) {
int p = last, q = tree[last].son[x];
if (tree[q].len == tree[p].len + 1) last = q;
else {
tree[++cnt].len = tree[p].len + 1;
int nq = cnt;
memcpy(tree[nq].son, tree[q].son, sizeof(tree[q].son));
tree[nq].fa = tree[q].fa;
tree[q].fa = nq;
while (p != -1 && tree[p].son[x] == q) {
tree[p].son[x] = nq;
p = tree[p].fa;
}
last = nq;
}
}
else {
tree[++cnt].len = tree[last].len + 1;
int p = last, now = cnt;
while (p != -1 && !tree[p].son[x]) {
tree[p].son[x] = now;
p = tree[p].fa;
}
if (p == -1) tree[now].fa = 0;
else {
int q = tree[p].son[x];
if (tree[q].len == tree[p].len + 1) tree[now].fa = q;
else {
tree[++cnt].len = tree[p].len + 1;
int nq = cnt;
memcpy(tree[nq].son, tree[q].son, sizeof(tree[q].son));
tree[nq].fa = tree[q].fa;
tree[now].fa = tree[q].fa = nq;
while (p != -1 && tree[p].son[x] == q) {
tree[p].son[x] = nq;
p = tree[p].fa;
}
}
}
last = now;
}
}
void solve() {
int n;
cin >> n;
tree[0].fa = -1;
for (int i = 1; i <= n; ++i) {
string s;
cin >> s;
int len = s.length();
last = 0;
for (int j = 0; j < len; ++j) insert(s[j] - 'a');
}
LL ans = 0;
for (int i = 1; i <= cnt; ++i) ans += tree[i].len - tree[tree[i].fa].len;
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}
查找子串的出现次数。
对于子串 t, 出现次数其实就是结束位置的数量,也就是 ∣endpos(t)∣。
每插入一个字符,标记当时的last,
最后这些 last 统一往上跳,计算∣endpos(t)∣ 即可。
查找所有不同子串的出现次数。
计算 ∣endpos(t)∣ 即可,
同一个 endpos 包含的子串数量可用 len 计算出来。
查找所有不同子串的总长。
同一个 endpos 包含的子串总长也可以用 len 计算出来。
查找所有不同子串的 总长 × 出现次数
2, 3已经给出,因此同上。
查找两个串的最长公共后缀/前缀。
后缀其实就是求 fail 树上的 LCA,前缀对反串建 SAM 即可。
分别维护不同串的 siz
求两个字符串的相同子串数量。
如上黑体字所说,两个串的 |endpos|要分开计算,可以开一个二维数组,用 siz[x][id] 表示节点 x在 串 id上的 |endpos|大小。
则答案为:∑siz[i][0]×siz[i][1]×(maxlen[i]−maxlen[link[i]])
线段树合并维护 siz
给出主串 S以及 m 个字符串 T[1..m]。有若干次询问,每次查询 S的子串 S[pl..pr]在 T[l..r]中的哪个 串 Ti 里的出现次数最多,输出 i以及出现次数,有多解则取最靠前的那一个。
先把所有字符串都插入到广义 SAM中,对于每个节点开一颗下标为 [1,m]的动态开点线段树维护 siz (注意插入 S 时就不要在线段树上进行修改操作了)。由于 siz的维护是统计子树和,所以插入结束后 要在 parent树上跑一下线段树合并。
查询时先在 parent 树上倍增找到包含子串 S[pl,pr]的等价类状态节点,然后在该点的线段树上查询区 间 [l,r]中的最大值,顺便维护下最大值所处位置即可。
树上本质不同路径数
给出一颗叶子结点不超过 20 个的无根树,每个节点上都有一个不超过 10 的数字,求树上本质不同 的路径个数(两条路径相同定义为:其路径上所有节点上的数字依次相连组成的字符串相同)。
首先有一个很麻烦的地方是路径可以拐弯(即两端点分别在其 lca两个不同儿子节点的子树中),而 Trie树和各种自动机在“接受”字符串时都是以根为起点从上往下径直走到底
这里直接抛结论:
一颗无根树上任意一条路径必定可以在以某个叶节点为根时,变成一条从上到下的路径(利于广义 SAM的使用)
注意到题目中说叶节点不超过 20 个,这意味着暴力枚举每一个叶节点作为根节点遍历整棵树
将一共 颗树中的所有前缀串都抽出来建立广义 SAM,然后直接求本质不同的子串个数。 其中前缀串定义为从根节点(无根树的某个叶子结点)到任意一个节点的路径所构成的字符串(实际 上就是将 颗Trie 树合在了一起跑广义SAM)。
最小表示法
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define P pair<int,int>
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll INF = 1e18;
const ll N = 3e5 + 10;
int a[N << 1];
void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
a[i + n] = a[i];
}
int i = 1, j = 2, k;
while (i <= n && j <= n) {
k = 0;
while (k < n && a[i + k] == a[j + k]) k++;
if (k == n) break;
if (a[i + k] > a[j + k]) i += k + 1;
else j += k + 1;
if (i == j) j++;
}
k = min(i, j);
for (int i = 1; i <= n; ++i) cout << a[k + i - 1] << " ";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int _t;
_t = 1;
//cin>>_t;
while (_t--) {
solve();
}
return 0;
}