2024牛客五一集训派对day3 J.Identical Trees 【树形DP、费用流、树哈希】

J. Identical Trees

传送门

题意

给定两颗有根树,每次操作可以将第一颗树的一个点的编号更换成任意数
求出将第一颗树变成与第二棵树完全一样最小操作数(只需每个节点的父亲节点编号一致即可)

1 ≤ n ≤ 500 1 \leq n \leq 500 1n500

思路

定义 d p [ u ] [ v ] dp[u][v] dp[u][v] 为:将 T 1 T1 T1 中的 u u u 点代表的子树,改为 T 2 T2 T2 中的 v v v 点代表的子树的最小操作数,如果 u , v u,v u,v 子树不同构,则为无穷大

那么我们可以从 T 1 , T 2 T1,T2 T1,T2 的根节点开始,枚举所有的 O ( n 2 ) O(n ^ 2) O(n2) 的可行的组合
对于当前的节点 u 1 ∈ T 1 , u 2 ∈ T 2 u_1 \in T1, u_2 \in T2 u1T1,u2T2,他们的所有儿子: v 1 ∈ s o n ( u 1 ) , v 2 ∈ s o n ( u 2 ) v_1 \in son(u_1), v_2 \in son(u_2) v1son(u1),v2son(u2)
那么我们就需要为每一个 v 1 v_1 v1 选择一个 v 2 v2 v2,转移过去,花费为: d p [ v 1 ] [ v 2 ] dp[v_1][v_2] dp[v1][v2]
而且每一个 v 2 v_2 v2恰好有一个 v 1 v_1 v1 与其对应,我们就可以将 v 1 , v 2 v_1, v_2 v1,v2 抽象成点,
v 1 v_1 v1每一个 v 2 v_2 v2 连边,边的容量为 1 1 1,花费为 d p [ v 1 ] [ v 2 ] dp[v_1][v_2] dp[v1][v2]
那么 d p [ u 1 ] [ u 2 ] dp[u_1][u_2] dp[u1][u2] 就是 最小费用最大流

由于这张图本质上是一个二分图,所以也可以跑一个二分图最大权值匹配 K M KM KM 算法来求,都是可以的。

判同构的话用树哈希即可

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

struct MCF {
    struct Edge {
        int v, c, w;
        Edge(int v, int c, int w) : v(v), c(c), w(w) {}
    };
    const int n;
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<ll> h, dis;
    std::vector<int> pre;
    bool dijkstra(int s, int t) {
        dis.assign(n + 1, std::numeric_limits<ll>::max());
        pre.assign(n + 1, -1);
        std::priority_queue<std::pair<ll, int>, std::vector<std::pair<ll, int>>, std::greater<std::pair<ll, int>>> que;
        dis[s] = 0;
        que.emplace(0, s);
        while (!que.empty()) {
            ll d = que.top().first;
            int u = que.top().second;
            que.pop();
            if (dis[u] < d) continue;
            for (int i : g[u]) {
                int v = e[i].v;
                int c = e[i].c;
                int w = e[i].w;
                if (c > 0 && dis[v] > d + h[u] - h[v] + w) {
                    dis[v] = d + h[u] - h[v] + w;
                    pre[v] = i;
                    que.emplace(dis[v], v);
                }
            }
        }
        return dis[t] != std::numeric_limits<ll>::max();
    }
    MCF(int n) : n(n), g(n + 1) {}
    void addEdge(int u, int v, int c, int w) {
        g[u].push_back(e.size());
        e.emplace_back(v, c, w);
        g[v].push_back(e.size());
        e.emplace_back(u, 0, -w);
    }
    std::pair<int, ll> flow(int s, int t) {
        int flow = 0;
        ll cost = 0;
        h.assign(n + 1, 0);
        while (dijkstra(s, t)) {
            for (int i = 1; i <= n; ++i) h[i] += dis[i];
            int aug = std::numeric_limits<int>::max();
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
                e[pre[i]].c -= aug;
                e[pre[i] ^ 1].c += aug;
            }
            flow += aug;
            cost += ll(aug) * h[t];
        }
        return std::make_pair(flow, cost);
    }
};

const int N = 505;

std::vector<int> g[N], f[N];
int dp[N][N];
int rt1, rt2;
int n;
ull hash1[N], hash2[N];

const ull mask = std::chrono::steady_clock::now().time_since_epoch().count();

ull shift(ull x) {
    x ^= mask;
    x ^= x << 13;
    x ^= x >> 7;
    x ^= x << 17;
    x ^= mask;
    return x;
}

void getHash(int u, int fa, int id){
    std::vector<int>& e = (id == 1 ? g[u] : f[u]);
    ull* hash = (id == 1 ? hash1 : hash2);
    
    hash[u] = 1;
    for(auto v : e)
        if(v ^ fa){
            getHash(v, u, id);
            hash[u] += shift(hash[v]);
        }
}

int solve(int u1, int u2){
    if(hash1[u1] != hash2[u2] || g[u1].size() != f[u2].size()) return n + 5; //不同构
    if(g[u1].size() + f[u2].size() == 0) return u1 != u2;
    
    for(auto v1 : g[u1])
        for(auto v2 : f[u2]){
            dp[v1][v2] = solve(v1, v2); //树形DP
        }
    
    MCF mcf(2 * g[u1].size() + 5); //两颗树的儿子节点数量
    fore(i, 0, g[u1].size()){
        int v1 = g[u1][i];
        fore(j, 0, f[u2].size()){
            int v2 = f[u2][j];
            // 流量为1,费用是dp值
            if(dp[v1][v2] < n) mcf.addEdge(i + 1, g[u1].size() + j + 1, 1, dp[v1][v2]);
        }
    }

    int S = g[u1].size() * 2 + 1;
    int T = S + 1; //源点汇点
    fore(i, 0, g[u1].size()) mcf.addEdge(S, i + 1, 1, 0);
    fore(i, 0, f[u2].size()) mcf.addEdge(g[u1].size() + i + 1, T, 1, 0);

    return mcf.flow(S, T).se + (u1 != u2); //返回费用
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    std::cin >> n;
    fore(i, 1, n + 1)
        fore(j, 1, n + 1)
            dp[i][j] = n + 10000;
    fore(i, 1, n + 1){
        int fa;
        std::cin >> fa;
        if(!fa) rt1 = i;
        else g[fa].push_back(i);
    }
    fore(i, 1, n + 1){
        int fa;
        std::cin >> fa;
        if(!fa) rt2 = i;
        else f[fa].push_back(i);
    }

    /* 树哈希 */
    getHash(rt1, 0, 1);
    getHash(rt2, 0, 2);

    std::cout << solve(rt1, rt2);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值