「网络流 24 题」方格取数 【最大独立集、最小割】

「网络流 24 题」方格取数

1

思路

首先我们将每一个相邻关系抽象成,问题就转化为:选择若干个点,并且满足所选点集内部没有边,那么这就是一个最大点权独立集的问题

如果点权全为一我们就可以利用二分图的匈牙利算法来解决,对于这种点权不为 1 1 1 的,我们使用 最大流最小割 来求解

我们进一步转化问题,假设我们一开始将所有点全部选择了,现在肯定是不合法的(除非 n = m = 1 n = m =1 n=m=1),那么我们就要从中删去若干个点,使得点集合法,并且我们要让删去的点权和最小,这样子留下的点权和才最大

我们先将网格上的点按照 i + j i + j i+j 的奇偶性染色,如果是奇数就染成白色,否则黑色。
可以发现图上响铃的两点一定不同颜色

我们将白色点视为二分图的左点,黑色点视为二分图的右点,对于所有 左点 i i i,我们从源点 S S S 连边 S → i S \rarr i Si,边权即为这个点的点权;同理,对于所有右点 j j j,我们连边 j → T j \rarr T jT汇点,边权也为其点权

同时对于左右点内部,我们按照其相邻关系连有向边,如果 i , j i,j i,j 相邻,连边 i → j i \rarr j ij i i i 是左点, j j j 是右点),容量 ∞ \infty

我们需要指出:这张图的最小割即为我们要删去的最小点权和

这是因为对于任意一个,它可以将图分为左右两个不相连的部分;如果我们选择的集合内部有边的话,那么一定存在从 S → T S \rarr T ST 的流量,我们如果把它割掉 S → T S \rarr T ST 就没有流量了,等价于所选点集内部没有边;而最小割则是所有删除方案中代价最小

因此答案即为:所有点权之和 − - 最小割

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

constexpr int inf = 1E9;

template<class T>
struct Dinic {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
    
    int n; //点的数量,编号从 1 开始
    std::vector<_Edge> e; //链式前向星
    std::vector<std::vector<int>> g; //起到链式前向星nxt的作用
    std::vector<int> cur; //当前弧优化
    std::vector<int> h; //深度
    
    Dinic() {}
    Dinic(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n + 1, {});
        cur.resize(n + 1);
        h.resize(n + 1);
    }
    
    bool bfs(int s, int t) { //构造分层图
        h.assign(n + 1, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) { //下一层有容量的邻居
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a; //r是剩余可用流量
                if (r == 0) {
                    return f;  //如果r用完,说明f跑满了
                }
            }
        }
        return f - r; //否则f-r就是已用流量
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size()); //记录在e中的下标
        e.emplace_back(v, c);
        g[v].push_back(e.size()); //反向边
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n + 1, 0); //当前弧初始化
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
    
    std::vector<bool> minCut() { //最小割
        std::vector<bool> c(n + 1);
        for (int i = 1; i <= n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
    
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int n, m;
    std::cin >> n >> m;
    std::vector<std::vector<int>> a(n + 1, std::vector<int>(m + 1));
    Dinic<int> dinic(2 * n * m + 5);
    int S = 2 * n * m + 3, T = S + 1;
    int sum = 0;
    fore(i, 1, n + 1)
        fore(j, 1, m + 1){
            std::cin >> a[i][j];
            sum += a[i][j];
            int id = (i - 1) * m + j;
            int in = 2 * id - 1, out = 2 * id;
            dinic.addEdge(in, out, a[i][j]);
            if(i + j & 1) dinic.addEdge(S, in, INF);
            else dinic.addEdge(out, T, INF);
            if(i > 1){
                int lst = (i - 2) * m + j;
                if(i + j & 1) dinic.addEdge(out, 2 * lst - 1, INF);
                else    dinic.addEdge(2 * lst, in, INF);
            }
            if(j > 1){
                int lst = id - 1;
                if(i + j & 1) dinic.addEdge(out, 2 * lst - 1, INF);
                dinic.addEdge(2 * lst, in, INF);
            }
        }
    
    std::cout << sum - dinic.flow(S, T);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值