「网络流 24 题」方格取数
思路
首先我们将每一个相邻关系抽象成边,问题就转化为:选择若干个点,并且满足所选点集内部没有边,那么这就是一个最大点权独立集的问题
如果点权全为一我们就可以利用二分图的匈牙利算法来解决,对于这种点权不为 1 1 1 的,我们使用 最大流最小割 来求解
我们进一步转化问题,假设我们一开始将所有点全部选择了,现在肯定是不合法的(除非 n = m = 1 n = m =1 n=m=1),那么我们就要从中删去若干个点,使得点集合法,并且我们要让删去的点权和最小,这样子留下的点权和才最大
我们先将网格上的点按照
i
+
j
i + j
i+j 的奇偶性染色,如果是奇数就染成白色,否则黑色。
可以发现图上响铃的两点一定不同颜色
我们将白色点视为二分图的左点,黑色点视为二分图的右点,对于所有 左点 i i i,我们从源点 S S S 连边 S → i S \rarr i S→i,边权即为这个点的点权;同理,对于所有右点 j j j,我们连边 j → T j \rarr T j→T 到汇点,边权也为其点权
同时对于左右点内部,我们按照其相邻关系连有向边,如果 i , j i,j i,j 相邻,连边 i → j i \rarr j i→j( i i i 是左点, j j j 是右点),容量 ∞ \infty ∞
我们需要指出:这张图的最小割即为我们要删去的最小点权和
这是因为对于任意一个割,它可以将图分为左右两个不相连的部分;如果我们选择的集合内部有边的话,那么一定存在从 S → T S \rarr T S→T 的流量,我们如果把它割掉, S → T S \rarr T S→T 就没有流量了,等价于所选点集内部没有边;而最小割则是所有删除方案中代价最小的
因此答案即为:所有点权之和 − - − 最小割
#include<bits/stdc++.h>
#define fore(i,l,r) for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;
const int INF=0x3f3f3f3f;
const long long INFLL=1e18;
typedef long long ll;
constexpr int inf = 1E9;
template<class T>
struct Dinic {
struct _Edge {
int to;
T cap;
_Edge(int to, T cap) : to(to), cap(cap) {}
};
int n; //点的数量,编号从 1 开始
std::vector<_Edge> e; //链式前向星
std::vector<std::vector<int>> g; //起到链式前向星nxt的作用
std::vector<int> cur; //当前弧优化
std::vector<int> h; //深度
Dinic() {}
Dinic(int n) {
init(n);
}
void init(int n) {
this->n = n;
e.clear();
g.assign(n + 1, {});
cur.resize(n + 1);
h.resize(n + 1);
}
bool bfs(int s, int t) { //构造分层图
h.assign(n + 1, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) { //下一层有容量的邻居
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a; //r是剩余可用流量
if (r == 0) {
return f; //如果r用完,说明f跑满了
}
}
}
return f - r; //否则f-r就是已用流量
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size()); //记录在e中的下标
e.emplace_back(v, c);
g[v].push_back(e.size()); //反向边
e.emplace_back(u, 0);
}
T flow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n + 1, 0); //当前弧初始化
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
std::vector<bool> minCut() { //最小割
std::vector<bool> c(n + 1);
for (int i = 1; i <= n; i++) {
c[i] = (h[i] != -1);
}
return c;
}
struct Edge {
int from;
int to;
T cap;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};
int main(){
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
int n, m;
std::cin >> n >> m;
std::vector<std::vector<int>> a(n + 1, std::vector<int>(m + 1));
Dinic<int> dinic(2 * n * m + 5);
int S = 2 * n * m + 3, T = S + 1;
int sum = 0;
fore(i, 1, n + 1)
fore(j, 1, m + 1){
std::cin >> a[i][j];
sum += a[i][j];
int id = (i - 1) * m + j;
int in = 2 * id - 1, out = 2 * id;
dinic.addEdge(in, out, a[i][j]);
if(i + j & 1) dinic.addEdge(S, in, INF);
else dinic.addEdge(out, T, INF);
if(i > 1){
int lst = (i - 2) * m + j;
if(i + j & 1) dinic.addEdge(out, 2 * lst - 1, INF);
else dinic.addEdge(2 * lst, in, INF);
}
if(j > 1){
int lst = id - 1;
if(i + j & 1) dinic.addEdge(out, 2 * lst - 1, INF);
dinic.addEdge(2 * lst, in, INF);
}
}
std::cout << sum - dinic.flow(S, T);
return 0;
}