题意
给定两颗大小为
n
n
n 的树,现在
n
n
n 只猫中有
k
k
k 只猫是狂欢猫,每只猫
i
i
i 只能在第一颗或第二课树的
i
i
i 号节点。
每棵树的每一条边都有一个边权,当这条边的两个点都有狂欢猫,就累加到答案上
求最大答案
思路
对于每条边来说,如果要满足它(两端点
u
,
v
u, v
u,v 都有狂欢猫),那么在另一颗树上就一定会有若干条与
u
,
v
u,v
u,v 相连的边无法满足
所以对于每条边,它会与另一颗树上的某些边产生矛盾,我们在它们之间连边表示矛盾
那么我们将边抽象成点后,将它们的矛盾用边表示,每个点有一个点权就是这条边对应的边权
那么我们的目标就等价于在这张图上找出一个带权最大独立集
进一步观察发现:这张图是二分图,所以我们只需要跑 D i n i c Dinic Dinic,用点权之和减去最小割即为答案
#include<bits/stdc++.h>
#define fore(i,l,r) for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;
const int INF=0x3f3f3f3f;
const long long INFLL=1e18;
typedef long long ll;
constexpr int inf = 1E9;
template<class T>
struct Dinic {
struct _Edge {
int to;
T cap;
_Edge(int to, T cap) : to(to), cap(cap) {}
};
int n; //点的数量,编号从 1 开始
std::vector<_Edge> e; //链式前向星
std::vector<std::vector<int>> g; //起到链式前向星nxt的作用
std::vector<int> cur; //当前弧优化
std::vector<int> h; //深度
Dinic() {}
Dinic(int n) {
init(n);
}
void init(int n) {
this->n = n;
e.clear();
g.assign(n + 1, {});
cur.resize(n + 1);
h.resize(n + 1);
}
bool bfs(int s, int t) { //构造分层图
h.assign(n + 1, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) { //下一层有容量的邻居
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a; //r是剩余可用流量
if (r == 0) {
return f; //如果r用完,说明f跑满了
}
}
}
return f - r; //否则f-r就是已用流量
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size()); //记录在e中的下标
e.emplace_back(v, c);
g[v].push_back(e.size()); //反向边
e.emplace_back(u, 0);
}
T flow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n + 1, 0); //当前弧初始化
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
std::vector<bool> minCut() { //最小割
std::vector<bool> c(n + 1);
for (int i = 1; i <= n; i++) {
c[i] = (h[i] != -1);
}
return c;
}
struct Edge {
int from;
int to;
T cap;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};
const int N = 1005;
struct Edge{
int u;
int v;
int w;
};
std::vector<std::pair<int, int>> f[N];
Edge e1[N], e2[N];
int main(){
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
int t;
std::cin >> t;
while(t--){
int n, k;
std::cin >> n >> k;
std::vector<bool> cat(n + 1, false);
fore(i, 0, k){
int x;
std::cin >> x;
cat[x] = true;
}
int ans = 0;
fore(i, 1, n){
int u, v, w;
std::cin >> u >> v >> w;
e1[i] = {u, v, w};
if(cat[u] && cat[v]) ans += w;
}
fore(i, 1, n){
int u, v, w;
std::cin >> u >> v >> w;
e2[i] = {u, v, w};
if(cat[u] && cat[v]) ans += w;
f[u].push_back({v, i});
f[v].push_back({u, i});
}
Dinic<int> dinic(2 * n + 5);
int S = 2 * n + 1, T = S + 1;
fore(i, 1, n){
auto [u, v, w] = e1[i];
if(cat[u] && cat[v]) dinic.addEdge(S, i, w);
}
fore(i, 1, n){
auto [u, v, w] = e2[i];
if(cat[u] && cat[v]) dinic.addEdge(i + n, T, w);
}
fore(i, 1, n){
auto [u, v, w] = e1[i];
for(auto [x, j] : f[u]) dinic.addEdge(i, j + n, inf);
for(auto [x, j] : f[v]) dinic.addEdge(i, j + n, inf);
}
std::cout << ans - dinic.flow(S, T) << endl;
fore(i, 1, n + 1) f[i].clear();
}
return 0;
}