2024杭电多校(5) 1008. 猫咪们狂欢【带权最大独立集】

题意

给定两颗大小为 n n n 的树,现在 n n n 只猫中有 k k k 只猫是狂欢猫,每只猫 i i i 只能在第一颗或第二课树的 i i i 号节点。
每棵树的每一条边都有一个边权,当这条边的两个点都有狂欢猫,就累加到答案上
最大答案
1

思路

对于每条边来说,如果要满足它(两端点 u , v u, v u,v 都有狂欢猫),那么在另一颗树上就一定会有若干条与 u , v u,v u,v 相连的边无法满足
所以对于每条边,它会与另一颗树上的某些边产生矛盾,我们在它们之间连边表示矛盾

那么我们将边抽象成点后,将它们的矛盾用边表示,每个点有一个点权就是这条边对应的边权
那么我们的目标就等价于在这张图上找出一个带权最大独立集

进一步观察发现:这张图是二分图,所以我们只需要跑 D i n i c Dinic Dinic,用点权之和减去最小割即为答案

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

constexpr int inf = 1E9;

template<class T>
struct Dinic {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
    
    int n; //点的数量,编号从 1 开始
    std::vector<_Edge> e; //链式前向星
    std::vector<std::vector<int>> g; //起到链式前向星nxt的作用
    std::vector<int> cur; //当前弧优化
    std::vector<int> h; //深度
    
    Dinic() {}
    Dinic(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n + 1, {});
        cur.resize(n + 1);
        h.resize(n + 1);
    }
    
    bool bfs(int s, int t) { //构造分层图
        h.assign(n + 1, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) { //下一层有容量的邻居
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a; //r是剩余可用流量
                if (r == 0) {
                    return f;  //如果r用完,说明f跑满了
                }
            }
        }
        return f - r; //否则f-r就是已用流量
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size()); //记录在e中的下标
        e.emplace_back(v, c);
        g[v].push_back(e.size()); //反向边
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n + 1, 0); //当前弧初始化
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
    
    std::vector<bool> minCut() { //最小割
        std::vector<bool> c(n + 1);
        for (int i = 1; i <= n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
    
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

const int N = 1005;

struct Edge{
    int u;
    int v;
    int w;
};

std::vector<std::pair<int, int>> f[N];
Edge e1[N], e2[N];

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int t;
    std::cin >> t;
    while(t--){
        int n, k;
        std::cin >> n >> k;
        std::vector<bool> cat(n + 1, false);
        fore(i, 0, k){
            int x;
            std::cin >> x;
            cat[x] = true;
        }
        int ans = 0;
        fore(i, 1, n){
            int u, v, w;
            std::cin >> u >> v >> w;
            e1[i] = {u, v, w};
            if(cat[u] && cat[v]) ans += w;
        }
        fore(i, 1, n){
            int u, v, w;
            std::cin >> u >> v >> w;
            e2[i] = {u, v, w};
            if(cat[u] && cat[v]) ans += w;
            f[u].push_back({v, i});
            f[v].push_back({u, i});
        }

        Dinic<int> dinic(2 * n + 5);
        int S = 2 * n + 1, T = S + 1;
        fore(i, 1, n){
            auto [u, v, w] = e1[i];
            if(cat[u] && cat[v]) dinic.addEdge(S, i, w);
        }
        fore(i, 1, n){
            auto [u, v, w] = e2[i];
            if(cat[u] && cat[v]) dinic.addEdge(i + n, T, w);
        }
        fore(i, 1, n){
            auto [u, v, w] = e1[i];
            for(auto [x, j] : f[u]) dinic.addEdge(i, j + n, inf);
            for(auto [x, j] : f[v]) dinic.addEdge(i, j + n, inf);
        }

        std::cout << ans - dinic.flow(S, T) << endl;

        fore(i, 1, n + 1) f[i].clear();
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值