A comprehensive Survey on Community Detection with Deep Learning【深度学习下社区检测的综合调查】
文章目录
前言
原文链接:https://arxiv.org/abs/2105.12584
该文章设计并提出了一种新的分类方法,包括基于深度神经网络的深度学习的模型,深度非负矩阵分解和深度稀疏滤波。
将深度神经网络进一步分为卷积网络、图注意网络、生成对抗网络和自动编码器。也总结了流行的基准数据集、评估指标和解决实验设置问题的开源实现。最后讨论了社区检测在各个领域的实际应用,并指出了实现场景,并概述了未来方向。
关键词:社区检测、深度学习、社交网络、网络表示、图神经
一、作者为什么研究该问题【背景】
深度学习分类:深度神经网络(DNN)、深度非负矩阵分解(Deep Non - negative Matrix Factorization)、深度稀疏滤波(Deep Sparse Filtering)。
其中深度神经网络可以分为:卷积神经网络(CNN)、自动编码器(Auto-enconder)、图注意网络(GAT)、生成对抗网络(GAN)。
对于小型的网络以及简单场景,研究人员已经提出基于谱聚类、统计推断等技术的社区发现法。而在大型网络或具有高维特征的网络上,传统的社区发现法需要耗费大量的计算及存储空间。在现实世界的网络中,大量的非线性结构信息使得传统的模型并不能很好地应用在实际场景中。而针对这一问题,深度学习给出以下的解决方案:
(1)学习非线性网络属性,如节点间边的关系
(2)表示保留复杂网络结构的低维网络嵌入
(3)从各种信息中实现更好的社区检测
深度神经网络(DNN):包含多个隐藏的人工神经网络,对大量数据学习自动提取数据特征,用于分类、回归等任务。
深度非负矩阵分解(Deep Non- negative Matrix Factorization) : 是在非负矩阵的基础上结合深度神经网络,非负矩阵分解将非负矩阵V分为两个非负矩阵W和H的乘积,V≈WH。
深度稀疏滤波(Deep Sparse Filtering):属于无监督学习,基于稀疏性的概念:数据在某个表示空间中只有少数重要元素起作用,其他约等于零,让每一层输出尽可能稀疏。
卷积网络(CNN):是一种专门为处理具有网格结构数据(如图像、音频等)而设计的深度学习模型。其基本原理是通过卷积层(Convolutional Layer)中的卷积核(Convolutional Kernel)在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在图像数据中,卷积核可以检测图像中的边缘、纹理等特征。卷积核的权重是通过训练学习得到的,使得网络能够适应不同类型的数据特征。
自动编码器(Auto -enconder):属于无监督学习,通过学习输入数据的有效编码,再将输入数据进行压缩编码,最后解码。
图注意网络(GAT):用于处理图数据结构的神经网络框架。GAT主要通过引入注意力机制来处理图数据,使模型能自适应关注图中节点的不同邻居,从而更有效利用图的结构信息进行节点分类、链路预测。
生成对抗网络(GAN):有生成器及判别器组成的深度学习架构。生成器为了生成尽可能逼真的数据。判别器则是区分真实数据及生成器生成的数据。
谱聚类:基于图论及矩阵特征值分解的聚类方法。将数据点看作图的质点,数据点之间的相似度看作边的权重,通过对这个图的拉普拉斯矩阵进行特征值分解,将数据点划分到不同的簇中。
非线性网络属性:不具备简单的规则拓扑,如线性网络中的链状或树状结构,其节点之间的连接方式更复杂,会呈现小世界网络或无尺度网路。
低维网络表示:将高维复杂网络数据映射到低维空间(二维,三维),保留结构及信息,以便可视化。
二、传统研究方法
1.图划分(Graph Partition)
将网络划分为给定数量k的社区。Kernighan - Lin 算法(简称 KL 算法)是一种用于图划分的算法,主要目的是将一个图划分为两个大致相等规模的子图,同时使划分后的子图之间的连接权重之和尽可能小。其基本原理是基于贪心策略,通过不断地交换节点所属的子图来优化划分结果。谱对分是另一种应用谱拉普拉斯矩阵的代表性方法。
谱对分(Spectral Bisection):是一种基于图的谱理论的图分割方法。其核心原理是利用图的拉普拉斯矩阵(Laplacian Matrix)的特征值和特征向量来进行图的分割。对于一个无向图G =( V, E ),拉普拉斯矩阵L = D - A (其中D是度矩阵,A是邻接矩阵)。谱对分的基本思想是找到一个划分,使得划分后的两个子图之间的连接尽可能少(即割集的权重最小),同时每个子图内部的连接尽可能紧密。
2.统计推断
随机块模型(SBM)是一种应用广泛的生成模型,它将节点分配到社区中并控制它们的似然概率。这些变体包括度校正的SBM(DCSBM)和混合成员的SBM(MMB)。
3.层次聚类
通过三种方式发现层次化的群落结构(即树状图):分裂、凝聚和杂交。GirvanNewman(GN)算法通过不断去除边的方式发现社区结构,从而使一个新的社区出现。快速模块化(FastQ),一种凝聚算法,逐渐合并节点,每个节点最初被视为一个社区。社区基于结构相似度(CDASS)的检测算法以混合的方式联合应用分裂策略和凝聚策略。
GN算法:是一种用于发现复杂网络中社区结构的算法。其基本原理是通过逐步删除网络中边的中介中心性(Betweenness Centrality)较高的边来实现社区划分。中介中心性衡量了一条边在多大程度上控制了其他节点之间的最短路径。如果一条边的中介中心性很高,意味着它在网络的信息传递或连接不同部分中起着关键作用,删除这样的边可能会使网络分裂成不同的社区。
快速模块化(Fast - Modularity):是一种用于在复杂网络中检测社区结构的方法。其基本原理基于模块度(Modularity)的概念,模块度用于衡量网络划分成社区的质量。它通过优化模块度函数来找到网络中的社区结构。
结构相似度(Structural Similarity):是一种用于衡量两个结构(如网络结构、图像结构等)相似程度的指标。在网络分析领域,对于两个图G1 = ( V1 , E1)和G2 = ( V2 , E2 )(其中V表示节点集合,E表示边集合),结构相似度的计算方法有多种。一种常见的方法是基于图的拓扑结构特征,例如考虑节点的度分布、聚类系数、最短路径长度等特征来构建相似度度量。
应用分裂策略(Application of Splitting Strategy):是一种在处理复杂系统或数据结构时的方法,其核心原理是将一个较大的系统或结构逐步分解为较小的、更易于管理和分析的子部分。
凝聚策略(Agglomerative Strategy):是一种将多个个体或元素逐步合并为更大的群体或结构的方法。其基本原理是从每个元素作为一个单独的簇开始,然后根据某种相似性或距离度量,在每一步中选择最相似或距离最近的两个簇进行合并,不断重复这个过程,直到满足特定的停止条件,最终形成一个包含所有元素的层次聚类结构。
4.动力学方法
利用随机游动来动态地检测社区。例如,WalkTrap 中的随机游走计算节点距离和社区成员身份的概率。信息映射(InfoMap)应用最小长度编码。标签传播算法(LPA)通过一种信息传播机制来识别扩散群落。
5.谱聚类
网络光谱反映了群落的结构。谱聚类将网络划分在归一化的拉普拉斯矩阵和正则化的邻接矩阵上,并拟合了伪似然算法中的SBM。在归一化拉普拉斯矩阵的光谱上,Siemon等人的整合了宏观和微观的神经脑网络中的社区来获得集群。
6.基于密度的方法
重要的聚类算法包括基于密度的噪声应用空间聚类(DBSCAN)、网络结构聚类算法(SCAN)和社区检测结构中心定位(LCCD)。他们通过测量实体的密度来识别社区、中心和异常值。
应用空间聚类:是指利用空间聚类算法对具有空间属性的数据进行分析和处理的过程。其原理是基于空间数据点之间的空间位置关系(如距离、邻域等)和属性特征的相似性,将数据点划分为不同的簇,使得同一簇内的数据点在空间上相对接近且属性相似,而不同簇之间的数据点在空间上相对较远或属性差异较大。
网络结构聚类算法:是一类用于分析和处理复杂网络数据,将网络中的节点划分为不同簇或社区的算法。其目的是揭示网络内部的组织结构,使得同一簇内的节点之间连接紧密,而不同簇之间的连接相对稀疏。
社区检测结构中心定位:是指在复杂网络中确定各个社区结构的中心位置或核心节点的过程。在社区检测中,识别社区结构中心对于深入理解网络的组织方式和功能具有重要意义。社区中心节点往往在社区内部的信息传播、资源分配、控制和协调等方面发挥着关键作用。
7.优化方法
社区检测通常会使可能性最大化。模块化(Q) 是继其变体FastQ ,之后最经典的优化函数。鲁汶是另一种著名的优化算法,它采用节点移动策略的优化模块化。此外,贪婪优化的扩展包括模拟退火、极值优化和光谱优化。在局部和全局搜索中,进化优化由单一和多个目标组成。
三、基于深度学习的社区检测分类法
1.卷积网络
- 卷据神经网络CNNs
是一种特殊的前馈深度神经网络(DNN),用于图像数据等网格拓扑数据,其中卷积层降低了计算成本,池化操作符确保了CNN在特征表示方面的鲁棒性。
现有的基于CNN的社区检测方法实现的CNN模型具有严格的数据输入限制,需要对图像格式化和标记的数据进行预处理。
创新:第一个基于监督CNN的拓扑不完整网络(TINs)的社区检测模型。该模型有两个CNN层,最大池化算子用于网络表示,另一个全连接的DNN层用于社区检测。CNN架构从基本输入中逐渐恢复了完整的潜在特征。卷积层表示不同视图中每个节点的局部特征。最后一个完整的连接层 f 更新了每个节点的社区 vi 。
为了解决大规模社交网络中的高稀疏性问题:以下两种方法分别适用于特定的稀疏矩阵(即邻接矩阵的非零元素),以实现有效的社区检测。
(1)稀疏矩阵卷积(稀疏seconv)到CNN。
(2)具有稀疏Conv2D算子的稀疏CNN方法,从而显著减少了该方法中的操作次数
2. 图卷积神经网络GCNs
针对基于cnn的图结构数据,提出了GCNs ,并在光谱滤波器的一阶近似上执行。GCNs的分层传播的规律是:
1.有监督/半监督的社区分类
(1)线性图神经网络(LGCN),是一种监督社区检测模型,它提高了具有更好的社区检测性能,降低了计算成本。LGNN将非回溯算子与信念传播的消息传递规则相结合,学习有向网络中的节点表示特征。
(2)MRFasGCN,是一种半监督GCN社区检测模型通过将网络特定马尔可夫随机场扩展为新的卷积层(eMRF)来描述隐藏社区,使MRFasGCN社区导向,并对GCN的粗糙结果进行平滑细化。
2.无监督网络表示的社区聚类
(1)SCGN:SGCN通过将标签采样模型与GCN集成,在没有任何预先标签信息的情况下,对每个节点的社区成员进行网络拓扑和节点属性进行编码。
(2)图卷积梯形网络(GCLN):无监督社区检测均值架构(GCN-GCN),它基于CNN领域的U-Net。在GCLN中对称地建立了收缩路径和展开路径。从收缩路径中捕获的上下文特征与在扩展路径中学习到的局部信息相融合。分层传播遵循等式 。
2.图注意网络(GAT)
(1)用于**属性多路网络嵌入(DMGI)**的深度图信息,可以独立地嵌入每种关系类型,并计算网络嵌入,以最大化全局共享特征来检测社区。【缺点:不能将内在信号捕获到考虑节点属性的节点嵌入中】
(2)高阶深度多路信息模型(HDMI)【可以填补DMGI的缺点】来捕获信号及其相互作用。HDMI进一步设计了一个基于社区成员身份语义注意的多路网络层节点嵌入组合融合模块。
(3)**元路径聚合图神经网络(MAGNN)**通过多信息语义元路径提供了一种优越的社区检测解决方案,可以区分图注意层中的异构结构。
(4)HeCo:嵌入网络模式和元路径,采用改进的对比学习引导嵌入,通过注意力机制作用于节点重要性、网络异构性和语义特征,促进社区检测。
(5)CP - GNN 方法:通过上下文路径学习节点嵌入,利用注意力机制区分关系重要性,捕获高阶关系,无需预定义元路径。
3.生成对抗网络(GAN)
(1)SEAL 方法:通过图指针网络(iGPN)从选定种子节点生成种子感知社区,采用图同构网络(GINs)作为判别器,通过生成器和判别器的对抗训练改进社区检测。
(2)DR - GCN 方法:将条件 GAN 引入双正则化 GCN 模型,通过潜在分布对齐正则化和类条件对抗正则化平衡社区,解决不平衡社区问题。
(3)JANE 方法:利用拓扑和节点属性信息,通过多头自注意力编码器表示嵌入,在对抗训练中加入高斯噪声,区分真实和虚假样本,捕获语义变化。
(4)ProGAN 方法:通过编码节点间的接近度,从实例化三元组中发现和保留社区关系,将社区关系映射到低维空间。
(5)CommunityGAN 方法:针对重叠社区,为节点 - 社区对分配非负因子获取节点表示,通过生成器和判别器优化目标函数检测社区。
(6)CANE 方法:将社区检测模型(LDA)集成到对抗节点表示过程中,通过生成器和判别器的对抗训练,使节点表示表征社区属性。
(7)ACNE 方法:生成负社区作为假样本,通过行走策略和判别器联合映射节点和社区成员嵌入,保留节点 - 社区相关性,学习区分性社区表示。
4.自动编码器(AE)
一、堆叠 AE - 基于社区发现
1.semi - DRN 模型:将堆叠 AE 用于社区检测,通过模块化矩阵学习非线性节点表示,k - means 获取最终社区结构,同时优化模块化矩阵和成对约束矩阵。
2.DNE - SBP 模型:在有符号网络中,通过调整成对约束权重,使堆叠 AE 聚类正负连接区分的最近节点。
3.UWMNE 和 WMCNE - LE 模型:从局部网络结构角度整合网络拓扑和语义信息,通过深度 AE 保留社区属性,在节点表示学习中测量节点相似性。
4.sE - Autoencoder 模型:在进化聚类框架内开发,通过添加时间平滑正则化,利用前一时间步的社区结构指导当前时间步的检测,发现时变社区结构。
5.DANE 模型:开发两分支 AE 框架,分别映射网络结构和学习节点属性,通过多种接近度测量优化表示学习,检测社区。
6.Transfer - CDDTA 模型:采用转移学习框架,在源域和目标域通过 KL 散度平衡堆叠 AE,学习节点嵌入,将社区信息映射到平滑特征空间,解决数据分布问题。
7.DIME 模型:堆叠 AE 用于异构社会网络的多对齐结构,通过元路径表示关系和属性信息,开发元接近度测量,将相似节点嵌入到低维空间检测社区。
二、稀疏 AE - 基于社区发现
1.GraphEncoder 模型:将 AE 用于图聚类,通过稀疏项处理稀疏性,提高大规模网络聚类效率,证明稀疏网络可提供足够结构信息。
2.WCD 模型:通过稀疏 AE 在二阶邻居中进一步开发加权网络社区检测模型。
3.DFuzzy 模型:在并行处理框架中引入堆叠稀疏 AE,针对头节点检测重叠和不相交社区,基于模块化测量提高检测性能。
4.CDMEC 模型:结合稀疏 AE 和转移学习模型,通过构建四个相似矩阵共享局部信息,采用共识矩阵聚合社区检测结果。
三、去噪 AE - 基于社区发现
1.DNGR 模型:应用堆叠去噪编码器,通过随机游走生成概率共现矩阵和移位正点互信息矩阵,增强捕获局部结构信息的能力,用于社区检测。
2.DNC 模型:扩展 DNGR,联合学习节点嵌入和簇分配,通过自训练聚类和影响传播引导,关注动态社区活动。
3.MGAE 模型:对图属性和结构去噪,通过边际化过程随机移除属性获取损坏属性,最小化目标函数提高社区检测效果。
四、图卷积 AE - 基于社区发现
1.SDCN 模型:将 GCN 引入 AE,设计传递算子连接 AE 和 GCN,通过结构感知表示和双自监督优化更新社区,解决 GCN 的过平滑问题。
2.GUCD 模型:采用半监督 MRF 作为卷积层编码器,提出社区中心双解码器,在属性网络中识别社区,同时重构网络拓扑和节点属性。
3.O2MAC 模型:将多视图图划分为多个单视图图,每个视图用 AE 处理,通过 GCN 嵌入视图分离的图,解码器选择最有信息的图表示多视图图,通过自训练优化提高聚类结果。
五、图注意力 AE - 基于社区发现
1.DAEGC 模型:将 GAT 作为编码器,利用高阶邻居进行自训练聚类社区,通过注意力机制排名节点重要性。
2.GEC - CSD 模型:采用图注意力 AE 作为生成器,在对抗学习框架中结合自训练学习区分性社区表示,判别器确保簇分布多样性。
3.MAGCN 模型:设计两通路编码器,分别用多视图属性 GAT 去噪和获取一致嵌入,去除噪声和分布方差,用于社区检测。
4.SGCMC 模型:从 MAGCN 发展而来,通过在不同视图共享系数矩阵,开发自监督图卷积网络用于多视图聚类。
5.DMGC 模型:引入 AE 为每个图分配注意力系数,通过跨图质心聚类节点嵌入,在 Cauthy 分布下获得社区。
六、VAE - 基于社区发现
1.VGAE 模型:将 VAE 引入图学习领域,假设先验分布,采用 GCN 作为编码器,学习节点表示的潜在分布,用于社区检测。
2.TGA/TVGA 模型:用新的三解码器替换 VAE/VGAE 的解码器,描述社区中的三元闭包属性,用于社区检测。
3.VGECLE 模型:将图表示分为均值和协方差,通过生成模型检测社区,考虑节点与实际地理位置的隐式关系不确定性,采用混合高斯先验和教师 - 学生正则化。
4.DGLFRM 模型:通过 Beta - Bernoulli 过程建模稀疏节点嵌入,检测重叠社区并推断社区数量。
5.LGVG 模型:学习多层和伽马分布嵌入,从细粒度和粗粒度检测社区。
6.VGAECD 模型:采用高斯混合模型概括网络生成过程,通过定义联合概率和变分分布,最大化证据下界优化函数检测社区,但存在重建损失和社区损失平衡问题。
7.VGAECD - OPT 模型:提出双优化学习社区感知潜在表示,改进 VGAECD 的优化过程。
8.ARVGA 模型:在对抗 AE 框架下,基于先验分布嵌入潜在表示,通过判别器对抗训练,实现鲁棒的社区检测。
5.深度非负矩阵分解(DNMF)
(1)DANMF 模型:在无监督学习设置中具有影响力,采用 AE 框架在层次映射上进行网络重建,通过结合重建损失和图正则化训练社区成员映射和层次映射,适用于不相交和重叠社区检测。
(2)MDNMF 模型:将模块化直接应用于多层深度学习结构,通过最小化目标函数探索网络拓扑的隐藏特征,获取节点社区成员关系。
6.深度稀疏滤波(DSF)
(1)DSFCD 方法:分三个阶段进行社区发现,在网络表示阶段处理邻接矩阵、模块化矩阵和相似矩阵,选择最佳表示输入 DSF 进行社区特征映射,通过损失函数优化节点相似性,将相似节点聚类为社区,实验证明其准确性高于 SF。
四、应用领域
1.推荐系统:社区结构有助于基于图的推荐系统,如 CayleyNets 和 UWMNE/WMCNE - LE 等模型可通过检测节点关系产生高质量推荐。
2.生物化学:在蛋白质 - 蛋白质相互作用(PPI)网络和化合物分子图中,社区检测可识别蛋白质复合物和化学化合物,研究其在疾病中的作用,如在癌症检测和基因分析中的应用。
3.在线社交网络:分析在线社交活动可识别社区,如在 Twitter、LinkedIn 和 Facebook 等平台上,有助于理解用户兴趣、提供个性化服务,还可用于在线隐私保护、犯罪识别等。
4.社区欺骗:在 Facebook 等社交网络中存在社区欺骗现象,可通过社区结构熵等方法进行研究,评估社区检测算法的鲁棒性。
5.社区搜索:旨在根据社区对节点进行排序,如在用户兴趣搜索中,通过社区形成机制(如局部社区搜索、基于属性的搜索)提供相关结果。
五、未来研究方向
1.未知社区数量问题:多数真实数据无标签,社区数量 未知,现有无监督方法需指定 ,未来需探索基于网络拓扑结构等的解决方案。
2.社区嵌入:节点嵌入方法常忽略社区结构信息,未来应设计社区感知学习过程,提高社区检测准确性,同时优化计算成本和超参数。
3.层次网络:现实网络(如 Web)常呈现层次结构,传统方法在处理此类网络时存在局限,深度学习有望在保留层次结构的网络嵌入方面取得进展。
4.多层网络:现实系统多为多层网络,多层网络包含多种信息,社区检测可利用这些信息,但目前相关研究尚处于起步阶段,面临融合多层信息、处理交互类型差异、稀疏性和跨层连接等问题。
5.异构网络:准确描述现实需考虑异构信息,现有社区检测方法
六、方法总结
分类 | 方法 | 描述 |
---|---|---|
卷积网络 - CNN | Xin等人方法 | 基于监督CNN用于TINs,含CNN层和全连接层,通过卷积层表示节点特征,全连接层更新社区,准确率约80% |
卷积网络 - CNN | Sperl´ı和Santo等人方法 | 设计稀疏矩阵卷积处理大规模社交网络高稀疏性,减少运算量 |
卷积网络 - CNN | ComNet - R方法 | 采用边缘到图像模型,基于CNN对边缘分类,用局部模块化优化合并社区 |
卷积网络 - GCN | LGNN模型 | 改进SBM,在有向网络用softmax和交叉熵损失分类社区 |
卷积网络 - GCN | MRFasGCN模型 | 将马尔可夫随机场扩展为新卷积层,实现半监督检测 |
卷积网络 - GCN | SGCN模型 | 结合局部标签采样模型与GCN,无先验标签下编码拓扑和属性检测社区 |
卷积网络 - GCN | NOCD模型 | 结合概率模型和两层GCN,最小化负对数似然学习归属向量检测重叠社区 |
卷积网络 - GCN | GCLN模型 | 基于U - Net架构新GCN,用收缩和扩展路径融合信息,k - means无监督检测 |
卷积网络 - GCN | IPGDN模型 | 区分邻居节点,用HSIC正则化发现潜在特征减少检测难度 |
卷积网络 - GCN | AGC模型 | 结合自适应图卷积与谱聚类,用低通滤波器平滑节点嵌入表示图特征 |
卷积网络 - GCN | AGE模型 | 自适应测量节点相似性并滤波,用于社区检测 |
卷积网络 - GCN | CayleyNets模型 | 在谱图卷积架构用Cayley滤波器高阶近似,用均值池化和分类器预测社区成员 |
卷积网络 - GCN | SENet模型 | 引入谱聚类损失到三层GCN输出层,学习节点嵌入聚类 |
卷积网络 - GCN | CommDGI模型 | 用节点和社区间互信息联合优化图表示和聚类,对比训练获更好表示 |
图注意力网络(GAT) | DMGI方法 | 独立嵌入关系类型,用对比学习和共识正则化最大化共享特征检测社区 |
图注意力网络(GAT) | HDMI方法 | 在DMGI基础上捕获信号和属性,用融合模块组合节点嵌入,基于语义注意力检测社区 |
图注意力网络(GAT) | MAGNN方法 | 用元路径区分异构结构,生成属性,用注意力机制聚合方差,嵌入信息提高检测效果 |
图注意力网络(GAT) | HeCo方法 | 嵌入模式和元路径,用对比学习引导,用注意力机制作用于多种特征促进检测 |
图注意力网络(GAT) | CP - GNN方法 | 通过上下文路径学习节点嵌入,用注意力机制区分关系重要性捕获高阶关系 |
生成对抗网络(GAN) | SEAL方法 | 用图指针网络从种子节点生成社区,用判别器评估修正,对抗训练改进检测 |
生成对抗网络(GAN) | DR - GCN方法 | 将条件GAN引入双正则化GCN模型,用正则化平衡社区解决不平衡问题 |
生成对抗网络(GAN) | JANE方法 | 用多头自注意力编码器表示嵌入,对抗训练加噪声区分样本捕获语义变化 |
生成对抗网络(GAN) | ProGAN方法 | 编码节点接近度,从三元组中发现和保留社区关系映射到低维空间 |
生成对抗网络(GAN) | CommunityGAN方法 | 为重叠社区分配因子获取节点表示,用生成器和判别器优化目标函数检测社区 |
生成对抗网络(GAN) | CANE方法 | 将社区检测模型集成到对抗过程,使节点表示表征社区属性 |
生成对抗网络(GAN) | ACNE方法 | 生成负社区假样本,用行走策略和判别器联合映射,保留相关性学习区分表示 |
自编码器(AE) - 堆叠AE | semi - DRN模型 | 用堆叠AE检测社区,用模块化矩阵和k - means,优化矩阵和成对约束矩阵 |
自编码器(AE) - 堆叠AE | DNE - SBP模型 | 在有符号网络调整权重,使堆叠AE聚类正负连接区分节点 |
自编码器(AE) - 堆叠AE | UWMNE和WMCNE - LE模型 | 整合拓扑和语义信息,用深度AE保留社区属性,测量节点相似性 |
自编码器(AE) - 堆叠AE | sE - Autoencoder模型 | 在进化框架内开发,用时间平滑正则化,利用前序结构检测时变社区 |
自编码器(AE) - 堆叠AE | DANE模型 | 用两分支AE框架,分别处理网络结构和属性,多种接近度测量优化检测 |
自编码器(AE) - 堆叠AE | Transfer - CDDTA模型 | 用转移学习框架,在源域和目标域平衡堆叠AE,映射社区信息解决数据分布问题 |
自编码器(AE) - 堆叠AE | DIME模型 | 用堆叠AE处理异构网络多对齐结构,用元路径和接近度测量嵌入节点检测社区 |
自编码器(AE) - 稀疏AE | GraphEncoder模型 | 用AE聚类图,用稀疏项处理稀疏性,提高大规模网络聚类效率 |
自编码器(AE) - 稀疏AE | WCD模型 | 用稀疏AE在二阶邻居中开发加权网络社区检测模型 |
自编码器(AE) - 稀疏AE | DFuzzy模型 | 用堆叠稀疏AE针对头节点检测重叠和不相交社区,基于模块化测量提高性能 |
自编码器(AE) - 稀疏AE | CDMEC模型 | 结合稀疏AE和转移学习,用相似矩阵共享信息,用共识矩阵聚合结果 |
自编码器(AE) - 去噪AE | DNGR模型 | 用堆叠去噪编码器,随机游走生成矩阵增强捕获局部结构信息能力检测社区 |
自编码器(AE) - 去噪AE | DNC模型 | 扩展DNGR,联合学习节点嵌入和簇分配,自训练聚类关注动态活动 |
自编码器(AE) - 去噪AE | MGAE模型 | 对图属性和结构去噪,用边际化过程移除属性最小化目标函数提高检测效果 |
自编码器(AE) - 图卷积AE | SDCN模型 | 将GCN引入AE,用传递算子连接,通过结构感知表示和优化更新社区解决过平滑问题 |
自编码器(AE) - 图卷积AE | GUCD模型 | 用半监督MRF作编码器,用双解码器在属性网络中识别社区并重构拓扑和属性 |
自编码器(AE) - 图卷积AE | O2MAC模型 | 划分多视图图用AE处理,用GCN嵌入,解码器选图自训练优化提高聚类结果 |
自编码器(AE) - 图注意力AE | DAEGC模型 | 用GAT编码器利用高阶邻居自训练聚类社区,用注意力机制排名节点重要性 |
自编码器(AE) - 图注意力AE | GEC - CSD模型 | 用图注意力AE作生成器,在对抗学习框架中自训练学习区分表示,判别器确保多样性 |
自编码器(AE) - 图注意力AE | MAGCN模型 | 设计两通路编码器,用GAT去噪和获取一致嵌入,去除噪声方差用于检测 |
自编码器(AE) - 图注意力AE | SGCMC模型 | 从MAGCN发展而来,在不同视图共享系数矩阵,开发自监督网络用于多视图聚类 |
自编码器(AE) - 图注意力AE | DMGC模型 | 用AE为图分配系数,跨图质心聚类节点嵌入在Cauthy分布下获得社区 |
自编码器(AE) - VAE | VGAE模型 | 将VAE引入图学习,用GCN作编码器,学习潜在分布用于社区检测 |
自编码器(AE) - VAE | TGA/TVGA模型 | 用新解码器替换VAE/VGAE解码器,描述三元闭包属性用于检测 |
自编码器(AE) - VAE | VGECLE模型 | 将图表示分均值和协方差,用生成模型检测社区,考虑不确定性用正则化 |
自编码器(AE) - VAE | DGLFRM模型 | 用Beta - Bernoulli过程建模稀疏节点嵌入,检测重叠社区推断数量 |
自编码器(AE) - VAE | LGVG模型 | 学习多层和伽马分布嵌入,从不同粒度检测社区 |
自编码器(AE) - VAE | VGAECD模型 | 用高斯混合模型概括生成过程,定义联合概率和变分分布优化函数检测社区,存在平衡问题 |
自编码器(AE) - VAE | VGAECD - OPT模型 | 提出双优化改进VGAECD学习社区感知潜在表示 |
自编码器(AE) - VAE | ARVGA模型 | 在对抗AE框架下,基于先验分布嵌入潜在表示,用判别器对抗训练实现鲁棒检测 |
深度非负矩阵分解(DNMF) | DANMF模型 | 用AE框架在层次映射上重建网络,结合损失和正则化训练社区检测,适用于不相交和重叠社区 |
深度非负矩阵分解(DNMF) | MDNMF模型 | 将模块化应用于多层结构,最小化目标函数探索拓扑特征获取社区成员关系 |
深度稀疏过滤(DSF) | DSFCD方法 | 分三阶段发现社区,处理多种矩阵,用损失函数优化相似性聚类节点,精度高于SF |