小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
要求输出:
一个正整数,表示最大不能买到的糖数
例如:
用户输入:
4 7
程序应该输出:
17
再例如:
用户输入:
3 5
程序应该输出:
7
分析案例1:
要找到最大的不能由两种包装的糖果数(这里是4颗和7颗一包)组合出的数字,我们可以从一些基本观察开始。给定的两个数是4和7,我们知道任何大于等于这两个数的倍数之间最小公倍数(LCM)的数字都可以通过这两种包装组合出来。对于4和7,它们的最小公倍数是28(因为4和7互质,所以就是4*7)。
接下来,我们想找到小于28的最大不能被4和7组合出的数字。由于4和7都是包装单位,任何小于4的数字都不能被组合出来。但是,由于我们可以通过组合4的多个包装来得到大于等于4的任何数字(除了那些不能被4整除且在28以下的数字,以及不能通过7的倍数和4的组合达到的数字),所以我们需要找到小于28的、不能通过4和7的组合来形成的最大数字。
从数学的角度来说,这个问题可以通过尝试组合4和7来解决,直到找到一个无法组合的最大数字为止。
代码思路:通过尝试所有可能的组合来找出不能由两种糖果包装数量组合出来的最大数字。这种方法直接而简单,适用于处理给定的包装数量不超过1000的情况。
#include <iostream>
#include <vector>
using namespace std;
// 函数用于判断特定的数字是否可以通过两种包装的糖果组合而成
bool canBeFormed(int num, int pack1, int pack2) {
for (int i = 0; i * pack1 <= num; ++i) {
if ((num - i * pack1) % pack2 == 0) {
return true;
}
}
return false;
}
int main() {
int pack1, pack2;
cin >> pack1 >> pack2;
int maxNum = pack1 * pack2 - pack1 - pack2; // 基于数学公式计算可能的最大不能组合数
while (canBeFormed(maxNum, pack1, pack2)) {
--maxNum;
}
cout << maxNum << endl;
return 0;
}
这个程序首先定义了一个canBeFormed
函数,它接受三个参数:要检查的数字和两种包装中糖果的数量。这个函数尝试所有可能的组合,如果找到一个组合使得给定的数字可以由这两种包装的糖果数量组合而成,则返回true
。
在main
函数中,程序读取两种包装中糖果的数量,然后使用一个循环来找出最大的不能由这两种包装数量组合出来的数字。循环的初始值设置为两个包装数的乘积减去这两个数的和,这是基于对问题的数学理解。