自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 数据结构散列表和数据结构的学习路线规划

入门基础:数组、链表、栈和队列(1-2周)。理解思想,实现基本操作。2. 散列表和树形结构(2-4周)。散列表包括散列函数、冲突解决、动态扩容、位图等。树形结构包括二叉树、平衡树、B树等。实现并分析时间复杂度。3. 排序与查找(2-3周)。分别实现不同的排序算法和查找算法,分析时间复杂度,理解适用场景。

2023-04-23 21:15:26 311 5

原创 大数据专业就业方向和考研院校及系统学习路线规划

仔细讲解了大数据专业的就业方向、学习方向、与考研院校的推荐,以及文内附带一万字的大数据专业职位所需知识技能储备详解和系统的学习路线规划和所需时间。

2023-04-06 15:48:54 4107 8

原创 大数据相关职位的知识储备与系统学习路线规划以及所需时间

全文1万字系统的介绍了数据分析师、数据科学家、大数据工程师、数据仓库工程师、大数据架构师需要掌握的知识和系统的学习路线附所需时间

2023-04-06 15:28:00 1744 4

原创 用python实现栈和队列并解释原理

python实现顺序栈、链式栈、普通队列(Queue)、双端队列(Deque)、阻塞队列(BlockingQueue)、井发队列的实现,以及阻塞井发队列的实现

2023-04-04 20:57:16 910 2

原创 三、线性表中数组和链表的python代码实现和代码解释

链表的数组和链表单链表、双向链表、双向循环链表和静态链表的python代码实现。

2023-03-31 22:16:16 461 3

原创 二、逻辑结构和存储结构的细讲

本章主要写数据结构中的逻辑结构和存储结构如何理解和以及二者之间的关系。

2023-03-25 16:45:32 645 1

原创 数据结构第一课的补充,对于算法目标和效率度量的简要介绍

算法目的的初步了解和如何判断算法的效率

2023-03-16 14:31:27 75 1

原创 数据结构的第一课--基本概念

数据结构初学要如何建立对数据结构的认识?

2023-03-14 14:15:40 288 3

大数据工程师 作为一名大数据工程师,需要掌握多个方面的技能和知识

这里做简单所需储备知识展示,文档内还有更多所需知识储备展示和系统学习路线的规划。 作为一名大数据工程师,需要掌握多个方面的技能和知识。以下是大数据工程师知识储备需要包括的方面,以及每个方面的详细介绍: 大数据技术和工具: 了解大数据技术和工具的基本原理和应用,如Hadoop、Spark、NoSQL、Kafka、Hive等。掌握这些技术和工具可以帮助大数据工程师高效地处理和分析大数据,并在海量数据中发现隐藏的模式和关系。 2、数据库和数据仓库: 熟悉数据库和数据仓库的基本知识,包括数据建模、数据设计、数据管理和数据安全等方面。了解数据库和数据仓库可以帮助大数据工程师存储和管理海量的数据,并从中提取有价值的信息。 3、分布式系统和计算机网络: 了解分布式系统和计算机网络的基本原理和应用,包括分布式计算、负载均衡、数据传输和网络安全等方面。这些知识可以帮助大数据工程师构建和维护高性能和高可用的大数据处理系统。

2023-04-06

作为数据科学家,需要掌握的知识储备相对更广泛和深入,需要具备以下几个方面的知识

这里用于展示部分内容,文档中还有具体的学习规划路线和时间分配 作为数据科学家,需要掌握的知识储备相对更广泛和深入,需要具备以下几个方面的知识: 1、统计学和概率论:数据科学家需要掌握统计学和概率论的基本知识,包括概率分布、假设检验、方差分析、回归分析等内容。这些知识是进行数据分析、建模和预测的基础。 2、数据挖掘和机器学习:数据科学家需要掌握数据挖掘和机器学习的基本算法和方法,如聚类、决策树、支持向量机、神经网络、深度学习等。这些算法和方法可以帮助数据科学家在大数据中发现隐藏的模式和关系,从而进行更加准确和有效的预测和决策。 3、数据库和数据仓库:数据科学家需要了解数据库和数据仓库的基本知识,包括数据建模、数据设计、数据管理和数据安全等方面。这些知识可以帮助数据科学家存储和管理海量的数据,并从中提取有价值的信息。

2023-04-06

数据分析师系统学习路线

数据分析师的具体技能要求和知识储备,本文档系统的介绍了要成为一名数据分析师要掌握的知识,和系统的学习进度路线,包括每段时间的学习的知识点和所需要学习的时间。 可参考如下,内容丰富。 1、数据库知识:掌握 SQL 语言,了解数据表的设计、数据的存储与查询等基本概念。 2、统计学知识:包括概率论、统计学、假设检验、方差分析等内容,能够熟练使用统计分析工具进行数据分析。 3、数据挖掘知识:了解数据挖掘的基本概念,掌握常用的数据挖掘算法,如决策树、聚类、关联规则等。 4、机器学习知识:掌握常见的机器学习算法,如线性回归、逻辑回归、支持向量机、决策树、随机森林等。 5、数据可视化知识:了解常用的数据可视化工具,如 Tableau、Power BI、matplotlib、ggplot2 等,能够将数据以图表形式展现。

2023-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除