该题是经典博弈论题目,已知最后需要放置的石头数为k就是胜利,设任意情况下我们最多放置x个石头(注意x是一个未知数并且是对应任意情况,所以不同情况下x是变动的)则我们只需要保证Alice的倒数第二次放置的差距k-x=x+1,因为这样到Bob时他的放置情况只能是1到x(因为x代表的就是当前情况所能放置的最多石头),所以当Bob放置完,此时剩下需要放置的石头肯定是小于等于x的(原本差x+1个,Bob最少放一个剩余x,其他晴天剩余小于x),此时Alice可放置石头数肯定可以满足该条件(读题x肯定越到后面越大),其实这种情况还可以延伸,当我们这种情况满足时,比如k为100时,我们需要使n-k等于49,那我们想取49和想取100一样继续满足49-x=x+1即可也就是如下代码
int z=(y-1)/2,g=k;可以理解为g是当前石头数,z是Alice想赢需要满足的石头数
while(z>=n){//当我前一次需要的条件已经大于一开始的n,
那肯定停止,此时的g就是我能不断前推到达的终点也就是,最初的开始Alice的第一次放置
g=z;
z=(g-1)/2;
}
if(2*x>=g&&x!=g){//如果能满足我的第一次放置说明后面都能达到Alice赢,
cout<<"Alice"<<endl;
}
具体代码如下
#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--){
int x,y;
cin>>x>>y;
int z=(y-1)/2,g=y;
while(z>=x){
g=z;
z=(g-1)/2;
}
if(2*x>=g&&x!=g){
cout<<"Alice"<<endl;
}
else{
cout<<"Bob"<<endl;
}
}
}