第四届上海理工大学程序设计全国挑战赛(重现赛)G题石子游戏

题目链接

该题是经典博弈论题目,已知最后需要放置的石头数为k就是胜利,设任意情况下我们最多放置x个石头(注意x是一个未知数并且是对应任意情况,所以不同情况下x是变动的)则我们只需要保证Alice的倒数第二次放置的差距k-x=x+1,因为这样到Bob时他的放置情况只能是1到x(因为x代表的就是当前情况所能放置的最多石头),所以当Bob放置完,此时剩下需要放置的石头肯定是小于等于x的(原本差x+1个,Bob最少放一个剩余x,其他晴天剩余小于x),此时Alice可放置石头数肯定可以满足该条件(读题x肯定越到后面越大),其实这种情况还可以延伸,当我们这种情况满足时,比如k为100时,我们需要使n-k等于49,那我们想取49和想取100一样继续满足49-x=x+1即可也就是如下代码

int z=(y-1)/2,g=k;可以理解为g是当前石头数,z是Alice想赢需要满足的石头数
        while(z>=n){//当我前一次需要的条件已经大于一开始的n,
那肯定停止,此时的g就是我能不断前推到达的终点也就是,最初的开始Alice的第一次放置
            g=z;
            z=(g-1)/2;
        }
     if(2*x>=g&&x!=g){//如果能满足我的第一次放置说明后面都能达到Alice赢,
            cout<<"Alice"<<endl;
        }

具体代码如下

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int t;
    cin>>t;
    while(t--){
        int x,y;
        cin>>x>>y;
        int z=(y-1)/2,g=y;
        while(z>=x){
            g=z;
            z=(g-1)/2;
        }
        if(2*x>=g&&x!=g){
            cout<<"Alice"<<endl;
        }
        else{
            cout<<"Bob"<<endl;
        }
    }
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值