连续整数检测算法
1 . t = min{m, n} ;
2 . m 除以t , 如果余数为0 , 则执行步骤3 , 否则, 执行第4 步;
3 . n 除以t , 如果余数为0 , 返回t 的值作为结果, 否则, 执行第4 步;
4 . t = t - 1 , 转第2 步;
import java.util.Scanner;//由于要手动输入数字,引入Scanner
public class CM {
public static void main(String args[]){
System.out.println("请输入两个数:");
Scanner scanner=new Scanner(System.in);
int m=scanner.nextInt();//可键盘输入数字
int n=scanner.nextInt();//可键盘输入数字
int t;
if (m>=n){
t=n;
}
else {
t=m;
}
while (true){
if (m%t==0){
if (n%t==0){
System.out.println(m+"和"+ n+"的最大公约数为:"+t);
break;
}
else {
t = t -1;
}
}
else {
t = t-1;
}
}
}
}
过程:第一步;输入m=12 n=8,m>n,那么t=n=8;
第二步;m%t=4并不为0 n=%t=0 ,则要进行t=8-1=7
此时t=7再进行if里的计算,不满足m%t,n%t的余数都为0的话,则进行t=t-1,再进行第二步
直到满足m%t,n%t的余数都为0,则输出m,n的最大公约数t,这里会输出t=4,4就是12和8的最大公约数。
辗转相除法(欧几里得算法)
1 . r = m % n;
2 . 循环直到r = 0
2 .1 m = n;
2 .2 n = r ;
2 .3 r = m % n;
3 . 输出n;
import java.util.Scanner;
public class CM {
public static void main(String[] args){
System.out.println("请输入两个数:");
Scanner scanner=new Scanner(System.in);
int num1=scanner.nextInt();
int num2=scanner.nextInt();
int m = num1;
int n = num2;
int r=m%n;
while (r!= 0){
m=n;
n=r;
r=m%n;
}
System.out.println(num1+"和"+num2+"的最大公约数为:"+n);
}
}
过程:第一步;输入m=54 n=16;余数r=6;
第二步;m=n=16了,n=r=6,r=16%6=4
再以n=6,r=4进入第二步得出m=6,n=4,r=2
再次循环,m=4,n=2,此时r=0,则循环结束,此时的n就是最大公约数2
通过在csdn看到文章求“最大公约数的三种算法(java实现)”
学习总结:学习到了求最大公约数的逻辑思路,运用循环,还有其他的方法在以后继续学习。