CASA模型在估算陆地生态系统植被净初级生产力方面有着广泛的应用。以下是一个例子来阐述其应用:
假设研究目标是估算某一地区的植被净初级生产力,该地区被不同类型的植被所覆盖,例如森林、草原和农田。研究者可以使用CASA模型来估算这些植被类型的净初级生产力,并将其加总得到整个地区的植被净初级生产力。
首先,研究者需要收集该地区的气象数据,包括降雨量、温度、辐射等。这些数据将作为CASA模型的输入参数。
然后,研究者需要获取该地区不同植被类型的分布数据,例如森林覆盖率、草原面积和农田面积。这些数据将用于确定CASA模型中的不同植被类型的比例。
接下来,研究者可以运行CASA模型,输入前面收集到的气象数据和植被分布数据。CASA模型将根据气象条件和植被类型,模拟出每种植被类型的净初级生产力。
最后,研究者可以将不同植被类型的净初级生产力加总得到整个地区的植被净初级生产力。这将提供对该地区生态系统健康和生产力的估算,为生态环境管理和决策提供重要依据。
总之,CASA模型通过将气象数据和植被分布数据输入模型,可以估算出地区的植被净初级生产力,并在生态环境管理和决策中发挥重要作用。它可以帮助研究者理解和评估不同植被类型的生态系统功能,并为生态保护和资源管理提供科学依据。
CASA(Carnegie-Ames-Stanford Approach) 模型原理及实践技术
植被作为陆地生态系统的重要组成部分对于生态环境功能的维持具有关键作用。植被净初级生产力(Net Primary Productivity, NPP)是指单位面积上绿色植被在单位时间内由光合作用生产的有机质总量扣除自养呼吸的剩余部分。植被NPP是表征陆地生态系统功能及可持续性的重要参数之一,不仅直接反映生态系统在自然环境条件下的生产能力及质量状况,也是判定生态系统碳源/汇的重要因子。目前,基于多源遥感数据开展大尺度、长时间序列植被NPP估算并应用地理信息系统技术进行综合的空间格局和动态分析已经成为量化NPP的重要手段,对于我国实现2060“碳中和”目标具有重要意义。
CASA(Carnegie-Ames-Stanford Approach)模型是估算陆地生态系统植被净初级生产力NPP的经典模型
专题(一)CASA模型原理
CASA模型计算公式剖析:
专题(二)CASA模型相关遥感数据
1.NDVI、FPAR、辐射遥感产品(MODIS、GLASS…)获取途径
2.数据特点及注意事项
3.数据质量控制方法
专题(三)MODIS NDVI遥感产品预处理及代码实现
1.基于MODIS TOOL的HDF影像拼接/子区截取/格式转换
2.基于MODIS TOOL的长时序海量遥感数据的自动批处理程序
3.基于Matlab的长时序MODIS数据在线快速批处理提取
专题(四)MODIS FAPAR遥感产品预处理
1.处理方法
2.自动批处理技术
3.基于MATLAB代码实现快速批处理提取方法
(具体流程见专题三)
专题(五)MODIS NDVI、FPAR遥感产品数据时序重建
1.基于MATLAB的遥感产品数值读取
2.基于MATLAB的产品质量控制信息读取及解读
3.遥感数据异常值/离群值检测方法
4.时间序列遥感数据重构
专题(六)气象数据预处理与空间插值
1.辐射
2.温度
3.降水…
4.空间插值(克里金…)
专题(七)CASA模型代码实现
1.Matlab平台及应用
2.基于上述遥感与气象数据实现CASA模型(讲解与实践操作)
3.区域制图