在机器学习中,对数据进行归一化处理是一种常用的技术。
将数据从各种各样分布调整为平均值为 0、方差为 1 的标准分布,在很多情况下都可以有效地加速模型的训练。
这里假定需要处理的数据为 n个整数 a1,a2,⋯,an。
这组数据的平均值:
a¯=(a1+a2+⋯+an)/n
方差:
使用如下函数处理所有数据,得到的 n个浮点数 f(a1),f(a2),⋯,f(an) 即满足平均值为0且方差为 1
输入格式
第一行包含一个整数 n,表示待处理的整数个数。
第二行包含空格分隔的 n 个整数,依次表示 a1,a2,⋯,an。
输出格式
输出共 n行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f(a1),f(a2),⋯,f(an)。
如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 10^−4,则该测试点满分,否则不得分。
数据范围
全部的测试数据保证 n,|ai|≤1000,其中 |ai| 表示 ai 的绝对值。
且输入的 n个整数 a1,a2,⋯,an 满足:方差 D(a)≥1。
输入样例:
7
-4 293 0 -22 12 654 1000
输出样例:
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082
样例解释
平均值:a¯≈276.14285714285717
方差:D(a)≈140060.69387755104
标准差:sqrt(D(a))≈374.24683549437134
思路
根据题目意思,先求解数组中的元素平均值,在求其方差然后根据公式进行标准化后输出即可
代码
#include <bits/stdc++.h>
using namespace std;
const int N=10010;
int n;
double a[N],sum,sum2,A,D;
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
A=sum/n;
for(int i=0;i<n;i++)
{
sum2+=pow(a[i]-A,2);
}
D=sum2/n;
for(int i=0;i<n;i++)
{
cout<<(a[i]-A)/sqrt(D)<<endl;
}
return 0;
}