AcWing 4509. 归一化处理 寒假每日一练

文章提供了一段C++代码示例,用于对一组数据进行归一化处理,使其平均值为0,方差为1,以优化机器学习模型的训练。输入包括数据的数量和整数值,输出是归一化后的浮点数序列。
摘要由CSDN通过智能技术生成

在机器学习中,对数据进行归一化处理是一种常用的技术。

将数据从各种各样分布调整为平均值为 0、方差为 1 的标准分布,在很多情况下都可以有效地加速模型的训练。

这里假定需要处理的数据为 n个整数 a1,a2,⋯,an。

这组数据的平均值:

a¯=(a1+a2+⋯+an)/n

方差:

使用如下函数处理所有数据,得到的 n个浮点数 f(a1),f(a2),⋯,f(an) 即满足平均值为0且方差为 1

输入格式

第一行包含一个整数 n,表示待处理的整数个数。

第二行包含空格分隔的 n 个整数,依次表示 a1,a2,⋯,an。

输出格式

输出共 n行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f(a1),f(a2),⋯,f(an)。

如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 10^−4,则该测试点满分,否则不得分。

数据范围

全部的测试数据保证 n,|ai|≤1000,其中 |ai| 表示 ai 的绝对值。
且输入的 n个整数 a1,a2,⋯,an 满足:方差 D(a)≥1。

输入样例:

7
-4 293 0 -22 12 654 1000

输出样例:

-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082

样例解释

平均值:a¯≈276.14285714285717
方差:D(a)≈140060.69387755104
标准差:sqrt(D(a))≈374.24683549437134
 

思路

根据题目意思,先求解数组中的元素平均值,在求其方差然后根据公式进行标准化后输出即可

代码

#include <bits/stdc++.h>
using namespace std;
const int N=10010;

int n;
double a[N],sum,sum2,A,D;

int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>a[i];
        sum+=a[i];
    }
    A=sum/n;
    for(int i=0;i<n;i++)
    {
        sum2+=pow(a[i]-A,2);
    }
    D=sum2/n;
    for(int i=0;i<n;i++)
    {
        cout<<(a[i]-A)/sqrt(D)<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值