- 博客(17)
- 收藏
- 关注
原创 【FastAPI Web框架】Task1(Datawhale)
在【FastAPI Web框架】Task1的学习任务中,主要解决了Conda虚拟环境中Python版本与Jupyter Notebook内核不一致的问题。问题核心在于Jupyter Notebook当前使用的内核指向了错误的Python版本(3.11.4),而实际需要在虚拟环境fastapi(Python 3.10.17)中创建一个专属内核。通过分析,可能的原因是虚拟环境与Jupyter内核未绑定或Jupyter Notebook的内核独立于虚拟环境。解决措施包括确认当前虚拟环境的Python路径,为虚拟环
2025-05-13 21:48:29
292
原创 01lesson——FastAPI Web框架(jupyter notebook)
本文展示了如何使用Python进行异步编程,特别是通过FastAPI框架构建一个简单的Web应用。首先,通过sys.version确认了Python版本为3.10.17。接着,使用pip install fastapi和pip install uvicorn安装了FastAPI和Uvicorn库,分别用于构建Web应用和运行异步服务器。最后,编写了一个简单的FastAPI应用,定义了一个根路由/,返回{"message": "Hello World"},并通过Uvic
2025-05-13 21:45:08
943
原创 【PyPOTS时间序列】Task1(Datawhale)
本文介绍了PyPOTS工具包在处理部分观测时间序列(POTS)中的应用,旨在优化航天比赛中的代码。PyPOTS是一个开源Python工具箱,专注于处理包含缺失值的时间序列数据,支持插补、分类、聚类和预测等任务。文章详细阐述了时间序列数据的特性、PyPOTS的核心功能及其生态系统,包括TSDB、PyGrinder、BenchPOTS和BrewPOTS等组件。此外,文章还解读了相关论文,强调了PyPOTS的全面性、易用性和可扩展性,并提供了未来发展方向。通过PyPOTS,用户可以高效处理不完整时间序列数据,提升
2025-05-13 10:15:12
800
原创 【Datawhale春训营 气象预测(AI+航空安全)讨论会笔记】
让ai给你写代码,首先需要让它知道你数据的存储结构(这边类比下我做的后端项目:也就是数据库中表的结构。)这样它就拿到了输入的数据格式接着,告知它我需要的输出格式,中间的神经网络模型选择什么这样限定后,ai生成的代码就相对好些——你给它限定了输入、输出的格式+中间模型处理的方式。首先官方作者大佬的提问,后续做这个赛题的时候肯定是要先试着解决的,这里先记录下。其次,讨论中大家给的建议,在task2可能就得一一尝试下了。最后,对如何高效听取会议,笔者这边推荐腾讯会议的实时转写(哈哈,但有效)
2025-04-17 22:41:47
382
原创 【Datawhale春训营】气象预测(AI+航空安全)Task1笔记
✅ 真需求 :预测航空结冰相关的云水/冰/雨/雪等高危气象要素,保障飞行安全,提升飞行经济性。✅ 真数据 :来自欧洲中期天气预报中心的往年(2018-2022年)全球大气数据,拒绝“纸上谈兵”。其实我的prompt中就是加了“模型”这个机器学习/深度学习领域的关键词,就能让ai的输出结果相比上述第1个prompt的回答准确许多。先组织下你要提出的问题——作为初稿你需要ai回答的领域——让ai给出这个领域的关键词和介绍结合关键词,重新组织下你要提出的问题(让ai给你组织也未尝不可)
2025-04-14 11:46:40
457
原创 【gateway nc adapter虚拟网卡 win11 联想】问题的解决
由于需要登录公司内网,于是启用奇安信VPN。但启动后报出网关未连接的问题,于是我检查了我的网络适配器,并尝试解决,以下给出几种我实践过程中的行动,并附带最后成功的解决方法。
2025-04-12 01:05:58
947
原创 【极市平台-安全帽识别新手任务】的模型开发部分的讲解
鉴于同学们在初次尝试极市平台的打榜时,在新手任务中的环境配置/下载频繁报错,这里对我在模型开发部分中遇到的错误进行总结,以帮助各位同学顺利入门。
2025-04-10 19:26:59
400
1
原创 【动手学CAMEL Multi-Agent】第四章
简单来说,多路召回会得到大量文档片段结果,但这些结果的相关度参差不齐,尤其是排名靠后的片段。为了保证检索结果的质量,需要对这些结果进行重排,让相关度高的片段排在前面,从而提高最终生成效果的准确性和相关性。Graph RAG 是将知识图谱(Knowledge Graph)引入检索增强生成(RAG)框架的一种扩展形式。它利用结构化的知识显式表示实体及其关系,从而显著提升系统的推理能力和回答准确性。相比于传统 RAG 仅基于向量检索的机制,Graph RAG 在复杂任务中具有独特的优势。
2025-04-03 12:54:06
864
原创 【动手学CAMEL Multi-Agent】第三章
工作节点的添加内容中,虽然看似只是一个字符串,但 工作节点的描述在任务分配中至关重要。该系统由多个智能体(agents)组成,每个智能体在一个组织结构中扮演特定角色,协同完成复杂任务。遇到上述报错,未能解决,可能与模型本身有关,但也有跑通了的,在群聊回看聊天记录中相关报错,发现这个问题解决不了——需要开发者解决下(大致是这么个意思)Task Manager Agent 将任务分发到 Channel (图中 4),这是一个任务管理中枢。用户发出任务请求(例如“创建一个登录页面”,图中 1)。
2025-03-23 20:01:54
904
原创 【动手学CAMEL Multi-Agent】第二章
Q:什么是提示工程?Prompt的定义是什么?提示工程(Prompt Engineering)是一种技术,用于通过不改变模型的内部参数或权重来引导大语言模型(LLM)生成预期的结果。简单来说,就是给AI下指令,让它按照你的要求去做。这种技术可以应用于各种任务,比如回答问题、做算术、写文章等。掌握提示工程能够帮助我们更好地理解和利用大语言模型的能力和局限性。Prompt(提示)是指我们给AI的初始文本输入。通过给AI一个提示,我们可以引导它生成我们想要的回答或完成特定的任务。
2025-03-23 14:29:23
832
原创 【动手学CAMEL Multi-Agent】(Datawhale)第一章
以上代码实现了用户注册和登录的功能,并使用JWT进行身份验证。你可以根据需要进一步扩展和优化这些API接口。AI 用户:Instruction: 实现简历上传和筛选功能。Input: 请使用Express和阿里云OSS服务实现简历上传功能,并使用阿里云NLP服务进行简历筛选。AI 助手:Solution: 为了实现简历上传和筛选功能,我们将使用Express框架和阿里云OSS服务来处理文件上传,同时使用阿里云NLP服务进行简历筛选。以上代码实现了简历上传和筛选的功能。
2025-03-22 15:04:14
870
原创 Datawhale速通AI编程开发:基于Roo Code+DeepSeek的编程教程第4章笔记
绝对地址的确定稍微困难,但只要明白你安装的mcp模块在那个虚拟环境,进而去c盘的“.conda”寻找就显得简单多了。问题呀,其实就是对Nodejs 的运用,但由于并未接触过,就没有理解“映射”这个概念。当然通过上述的讲解,想必“映射”这个概念还是有所掌握。
2025-03-20 14:20:58
304
原创 速通AI编程开发:基于Roo Code+DeepSeek的编程教程之番茄钟复现
首先进入规划模式(也可先用提示词增强),输入:“帮我设计一个番茄时钟”,来得到一个项目文档。
2025-03-13 21:59:09
501
原创 社区志愿服务需求预测及其志愿者精准匹配算法项目
研究社区志愿服务需求预测及其志愿者精准匹配算法。收集或构建社区志愿服务数据集;深入分析社区志愿服务需求影响因素,例如年龄、性别、生理心理行为健康程度等,引入深度学习中的时间序列预测技术,预测未来时刻社区人群的志愿服务需求;基于志愿者信息,例如空闲时间、特长、年龄等,构建志愿者库,基于社区志愿服务需求预测结果,计算两者之间的匹配度,实现志愿服务需求与志愿者的精确匹配。项目进行到问卷做出来,并通过团委分发给相应组织管理人员分派填写问卷,收集所需数据信息,基本完成前期的数据收集大难题。
2025-01-16 21:00:22
1106
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人