快排,归并排序模板

目录

一·快排(不稳定):分治

传统快排(nlogn)

快速选择求第k个数(O(n))

二·归并(稳定,O(nlogn)):

传统归并

求逆序对数量


一·快排(不稳定):分治

传统快排(nlogn)

1.找到分界点 

2.>=x(partition)放左,<=x放右(两指针越过时停止),partition每次随机或取中值比取边界要快

3.递归

注意:模板涉及很多边界问题,x, i,j及符号不能随意更改,牵一发而动全身。

#include<algorithm>
#include<iostream>
using namespace std;

const int N = 1e6 + 10;

int n;
int q[N];

void quick_sort(int q[], int l, int r)
{
	if (l >= r)//一个数或没有数return
		return;
	int x = q[(l+r)/2], i = l - 1, j = r + 1;
	while (i<j)
	{
		do i++; while (q[i] < x);
		do j--; while (q[j] > x);
		if (i < j) swap(q[i], q[j]);
	}
	quick_sort(q, l, j);
	quick_sort(q, j + 1, r);
}

int main()
{
	scanf("%d", &n);
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &q[i]);
	}
	quick_sort(q, 0, n-1);
	for (int i = 0; i < n; i++)
	{
		printf("%d ", q[i]);
	}
	return 0;
}

快速选择求第k个数(O(n))

k<=sl,递归左边,否则递归右边


#include<iostream>
#include<algorithm>

using namespace std;

int n, k;
const int N = 1e6;
int q[N];

int quick_sort( int l, int r,int k)
{
	if (l == r)  return q[l];  // 只有一个数时就是所求,永远保证第k个数在所求区间
	int x = q[(l + r ) /2], i = l - 1, j = r + 1;
	while (i < j)
	{
		do i++; while (q[i] < x);
		do j--; while (q[j] > x);
		if (i < j) swap(q[i], q[j]);
	}
	int sl = j - l + 1;//l到j所有数
	if (k <= sl)
		return quick_sort(l, j, k);
	else
		return quick_sort(j + 1, r, k-sl);
}
int main()
{
	cin >> n >> k;
	for (int i = 0; i < n; i++)
	{
		cin >> q[i];
	}
	cout << quick_sort(0, n - 1, k) << endl;
	return 0;
}

二·归并(稳定,O(nlogn)):

传统归并

1.确定分界点(数组中间位置)

2.递归排序left,right

3。归并合二为一

#include<algorithm>
#include<iostream>

using namespace std;

const int N = 1e6+10;

int n;
int q[N],tmp[N];

void merge_sort(int q[], int l, int r)
{
	if (l >= r) return;

	int mid = l + r >>1;

	merge_sort(q, l, mid);
	merge_sort(q, mid + 1, r);

	int k = 0,i = l, j = mid + 1;
	while (i <= mid && j <= r)
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else tmp[k++] = q[j++];
	}
	while(i<=mid) tmp[k++] = q[i++];
	while(j<=r) tmp[k++] = q[j++];
	for (int i = l, j = 0; i <= r; i++, j++) q[i] = tmp[j];
}
int main()
{
	scanf("%d", &n);
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &q[i]);
	}
	merge_sort(q, 0, n-1);
	for (int i = 0; i < n; i++)
	{
		printf("%d ", q[i]);
	}
	return 0;
}

求逆序对数量

给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i个和第 j个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。

左半边逆序对数量  merge_sort(l,mid)

右半边逆序对数量 merge_sort(mid+1,r)

被分界点隔开的逆序对数量  mid-i+1(i:左     j:右    i前所有数满足小于j,i及i后所有数满足大于j)


#include<algorithm>
#include<iostream>

using namespace std;
typedef long long LL;

const int N = 1e6+10;

int n;
int q[N],tmp[N];


LL  merge_sort(int l, int r)
{
	if (l >= r) return 0;
	int mid = l + r >> 1;
	LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

	int k = 0, i = l, j = mid + 1;
	while (i <= mid && j <= r)
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else {
			res += mid - i + 1;//q[i]>q[j],并且q[i]后所有数都能和q[j]组成对
			tmp[k++] = q[j++];
		}
	}
	while (i <= mid) tmp[k++] = q[i++];
	while (j <= r) tmp[k++] = q[j++];

	for (int i = l, k = 0; i <= r; i++, k++)
		q[i] = tmp[k];
	return res;
}

int main()
{
	scanf("%d", &n);
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &q[i]);
	}
	cout << merge_sort(0, n - 1);
	return 0;
}


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值