高精度问题模板(大整数)

注:数据逆序存入数组方便解决进位问题

目录

正数加法

正数减法

乘法(高精度乘低精度)

除法(高精度除低精度)


正数加法

#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

const int N = 1e6 + 10;

vector<int> add(vector<int>& A, vector<int>& B)//加引用更快
{
	vector<int>C;

	int t = 0;//进位
	for (int i = 0; i < A.size() || i < B.size(); i++)
	{
		if (i < A.size()) t += A[i];
		if (i < B.size()) t += B[i];
		C.push_back(t % 10);
		t /= 10;
	}
	if (t) C.push_back(1);
	return C;
}
int main()
{
	string a, b;
	vector<int>A, B;
	
	cin >> a >> b;
	for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i]-'0');
	for (int i = b.size() - 1; i >= 0; i--) B.push_back(b[i]-'0');

	auto C = add(A, B);

	for (int i = C.size() - 1; i >= 0; i--)
	{
		cout << C[i];
	}
	return 0;
}


正数减法


#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

bool cmp(vector<int>& A, vector<int>& B)
{
	if (A.size() != B.size()) return A.size() > B.size();
	for (int i = A.size() - 1; i >= 0; i--)
	{
		if (A[i] != B[i]) return A[i] > B[i];
	}
	return true;
}


vector<int> sub(vector<int>& A, vector<int>& B)
{
	int t=0;//借位
	vector<int>C;
	for (int i = 0; i < A.size(); i++)
	{
		t = A[i] - t;
		if (i < B.size()) t -= B[i];
		C.push_back((t + 10) % 10);//t>=0不变,t<0借位
		if (t < 0) t = 1;
		else t = 0;
	}
	//处理类似00001的情况
	while (C.size() > 1 && C.back() == 0) C.pop_back();
	return C;
}

int main()
{
	string a, b;
	vector<int>A, B;
	cin >> a >> b;

	for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i]-'0');
	for (int i = b.size() - 1; i >= 0; i--) B.push_back(b[i]-'0');

	vector<int>C;

	//保证传入第一个数大于第二个数
	if (cmp(A,B))
	{
		C = sub(A, B);
	}
	else
	{
		C = sub(B, A);
		cout << '-';
	}
	for (int i = C.size() - 1; i >= 0; i--)
	{
		cout << C[i];
	}
	return 0;
}

乘法(高精度乘低精度)

计算A*B时,将B看作整体与A每一位相乘,正常进位

#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

vector<int> mul(vector<int>& A, int b)
{
	int t = 0;//进位
	vector<int>C;

	for (int i = 0; i < A.size()||t; i++)
	{
		if (i < A.size()) t += A[i] * b;
		C.push_back(t % 10);
		t /= 10;
	}
	while (C.size() > 1 && C.back() == 0) C.pop_back();
	return C;
}

int main()
{
	string a;
	int b;
	cin >> a >> b;
	vector<int>A;

	for (int i = a.size() - 1; i >= 0; i--)
	{
		A.push_back(a[i] - '0');
	}

	auto C = mul(A, b);

	for (int i = C.size()-1; i >= 0; i--)
	{
		cout << C[i];
	}
	return 0;
}

除法(高精度除低精度)

注:为和加减乘统一,被除数还是逆序存储

#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

//余r
vector<int> div(vector<int>A, int b, int&r)
{
	vector<int>C;
	for (int i = A.size() - 1; i >= 0; i--)
	{
		r = r * 10 + A[i];
		C.push_back(r / b);
		r %= b;
	}
	reverse(C.begin(), C.end());
	while (C.size() > 1 && C.back() == 0) C.pop_back();
	return C;
}
int main()
{
	string a;
	int b;
	cin >> a >> b;
	vector<int>A;

	for (int i = a.size() - 1; i >= 0; i--)
	{
		A.push_back(a[i] - '0');
	}

	int r = 0;//余数
	auto C = div(A, b,r);

	for (int i = C.size()-1; i >= 0; i--)
	{
		cout << C[i];
	}
	cout << endl << r;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值