KMP算法

串的模式匹配算法

在kmp算法中,主串的指针不需要再回退,模式串字符不等于主串时,指针j根据next数组回退至next[j]。


求解next数组

原理(参考严蔚敏版数据结构):

通过递推的方式得到,如图为模式串

当已知红色区与蓝色区已经匹配时,求next[j]:

1)若s[i]==s[j]

    next[j+1]=next[j]+1;

2)当s[i]!=s[j]

可将next数组求值理解成在模式串中求字串的问题;

故next[j]=next[i]+1;

当然这种方式求出的next数组还可以更新为nextval数组,具体参考数据结构部分。

算法题直接背模板。

严蔚敏数据结构书中求next和nextval数组的判断条件及边界问题难以记忆,故我在这里参考了网上的其他代码,整体思路一致,只是next[i]数组变成当i+1与j不匹配时i应回退的位置(这与408要求的next数组不同),故在求next数组时应存在p[next[i]]==p[i]。

                 a    b    c    a    b
下标          1    2    3    4    5
next[ ]        0    0    0    1    2


给定一个字符串 S,以及一个模式串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。

模式串 P在字符串 S 中多次作为子串出现。

求出模式串 P 在字符串 S中所有出现的位置的起始下标。

#include<algorithm>
#include<iostream>

using namespace std;

const int N = 1e7+10;

char s[N], p[N];
int ne[N];
int n, m;
int main()
{
	cin >> n >> p + 1 >> m >> s + 1;
//ne[1]==0故跳过
	for (int i = 2,j=0; i <= n; i++)
	{
		while (j&&p[i] != p[j + 1]) j = ne[j];
		if (p[i] == p[j + 1])  j++;
		ne[i] = j;
	}

	for (int i = 1, j = 0; i <= m; i++)
	{
		while (j&&p[j + 1] != s[i]) j = ne[j];
		if (p[j + 1] == s[i]) j++;
		if (j == n)
		{
			cout << i - n << " ";
			j = ne[j];
		}
	}
	return 0;
}

1)子串指针j都从0开始;

2)永远是子串j+1和主串i比较

3)不满足条件或已找到都要更新j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值