💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于VMD-CNN-BiLSTM的风电功率预测研究
一、研究背景与意义
风电作为一种清洁、可再生的能源,在全球能源结构中扮演着越来越重要的角色。然而,风电功率的随机性和波动性给电网调度和运行带来了巨大挑战。因此,准确预测风电功率对于电力系统的稳定运行和优化调度至关重要。基于VMD-CNN-BiLSTM的风电功率预测模型结合了变分模态分解(VMD)、卷积神经网络(CNN)和双向长短记忆神经网络(BiLSTM)的优势,旨在提高风电功率预测的准确性和稳定性。
二、模型结构与原理
1. 变分模态分解(VMD)
VMD是一种自适应的信号分解方法,它将原始信号分解为多个内在模态分量(IMFs)。每个IMF都代表信号中的一个独特频带或时间尺度,从而有助于提取出原始数据中的有用信息和特征。在风电功率预测中,VMD可以将风电功率数据分解为多个较为平稳的子序列,有助于后续模型的建模和预测。
2. 卷积神经网络(CNN)
CNN是一种深度学习模型,特别擅长处理图像和具有网格结构的数据。在VMD-CNN-BiLSTM模型中,CNN用于从VMD分解得到的IMFs中提取局部特征。通过卷积操作、激活函数和池化操作,CNN能够学习IMFs的空间层次结构,并生成对预测有用的特征表示。
3. 双向长短记忆神经网络(BiLSTM)
BiLSTM是一种特殊的循环神经网络(RNN),它克服了传统RNN在处理长序列时存在的梯度消失和梯度爆炸问题。BiLSTM通过在RNN的基础上增加了一个反向传播的隐藏层,使得模型能够同时捕捉序列中的前向和后向信息。在VMD-CNN-BiLSTM模型中,BiLSTM用于对CNN提取的特征进行建模,并捕捉时间序列中的长期依赖关系。
三、模型实现步骤
-
数据预处理:对原始风电功率数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。同时,对数据进行归一化处理,以消除不同量纲对模型训练的影响。
-
VMD分解:利用VMD算法将预处理后的风电功率数据分解为多个IMFs。每个IMF都代表不同时间尺度的风电功率波动特征。
-
CNN特征提取:将VMD分解得到的每个IMF作为CNN的输入,通过卷积层、激活函数和池化层等结构提取IMFs的局部特征。
-
BiLSTM时序建模:将CNN提取的特征向量输入到BiLSTM中,利用BiLSTM的双向传播特性捕捉序列中的长期依赖关系。BiLSTM的输出将用于后续的预测计算。
-
预测与评估:根据BiLSTM的输出结果,计算风电功率的预测值。使用测试集数据对模型进行评估,计算预测误差等性能指标(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。
四、研究成果与应用
基于VMD-CNN-BiLSTM的风电功率预测模型在多个风电场的应用中取得了显著成果。该模型能够准确捕捉风电功率的波动特征和长期依赖关系,提高预测的精度和稳定性。同时,该模型还具有较强的泛化能力,能够适用于不同规模和类型的风电场。
在实际应用中,该模型可以为电力系统提供可靠的风电功率预测数据支持,有助于电力系统的稳定运行和优化调度。此外,该模型还可以进一步拓展到其他领域的时间序列预测任务中,如光伏功率预测、负荷预测等。
五、未来展望
随着深度学习技术的不断发展和完善,基于VMD-CNN-BiLSTM的风电功率预测研究将不断深入和完善。未来可能的研究方向包括:
-
多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
-
模型优化:通过引入注意力机制、残差网络等先进算法对VMD-CNN-BiLSTM模型进行优化,以进一步提高预测精度和训练效率。
-
实时预测系统:开发高效的实时预测算法和平台,以实现风电功率的实时预测和动态调度。这将有助于电力系统更好地应对风电功率的波动性和不确定性挑战。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取