【问题描述】
二叉树是一种非常重要的数据结构,非常多其他数据结构都是基于二叉树的基础演变而来的。对于二叉树,深度遍历有前序、中序以及后序三种遍历方法。
三种基本的遍历思想为:
前序遍历:根结点 ---> 左子树 ---> 右子树
中序遍历:左子树---> 根结点 ---> 右子树
后序遍历:左子树 ---> 右子树 ---> 根结点
比如,求以下二叉树的各种遍历
前序遍历:1 2 4 5 7 8 3 6
中序遍历:4 2 7 5 8 1 3 6
后序遍历:4 7 8 5 2 6 3 1
需要你编写程序解决的问题是:已知一个二叉树的前序遍历和中序遍历的结果,给出该二叉树的后序遍历的结果。
【输入形式】
有多组测试数据,每组测试数据三行,每组测试数据第一行只有一个正整数n,表示二叉树节点的数目,n=0意味着输入结束并且不需要处理。
每组测试数据第二行是二叉树的前序遍历的结果,是一个长度为n的字符串,每个节点由一个字符表示,字符是大小写英文字母及10个数字,不同的节点用不同的字符表示,也即无论前序遍历和中序遍历的字符串中没有重复的字符。
每组测试数据第二行是二叉树的中序遍历的结果,也是一个长度为n的字符串。
40%的测试数据1 ≤ n≤ 10;
30%的测试数据1 ≤ n≤ 20;
20%的测试数据1 ≤ n≤ 40;
10%的测试数据1 ≤ n≤ 62;
【输出形式】
对于每组测试数据,输出一行,是一个长度为n的字符串,表示二叉树后序遍历的结果。
【样例输入】
8 12457836 42758136 4 abcd abcd 4 abcd dcba 0
【样例输出】
47852631 dcba dcba
算法思想解释:
- 在solution函数中,通过递归的方式进行处理。
- 首先,从字符串b中找到与字符串a的第一个字符匹配的位置i。
- 将字符串b分割为两部分:subb1是第一个字符之前的子串,subb2是第一个字符之后的子串。
- 将字符串a分割为两部分:suba1是除去第一个字符之后的子串,suba2是与subb2相同长度的子串。
- 然后,递归调用solution函数,对suba1和subb1进行处理。
- 再次,递归调用solution函数,对suba2和subb2进行处理。
- 最后,输出字符串a的第一个字符。
- 在主函数中,循环读取输入数据,调用solution函数进行处理,并输出结果。当输入的n为0时,跳出循环。
#include<cstring>
#include<iostream>
using namespace std;
void solution(string a,string b)
{
// 如果字符串a或b为空,则直接返回
if(a.length()==0 || b.length()==0)
{
return;
}
int i=0;
// 在字符串b中找到与字符串a的第一个字符匹配的位置i
for(; i<b.length(); i++)
{
if(b[i] == a[0])
break;
}
// 将字符串b分割为两部分:subb1是第一个字符之前的子串,subb2是第一个字符之后的子串
string subb1 = b.substr(0, i);
string subb2 = b.substr(i + 1, b.length() - i - 1);
// 将字符串a分割为两部分:suba1是除去第一个字符之后的子串,suba2是与subb2相同长度的子串
string suba1 = a.substr(1, i);
string suba2 = a.substr(i + 1, b.length() - i - 1);
// 递归调用solution函数,对suba1和subb1进行处理
solution(suba1, subb1);
// 递归调用solution函数,对suba2和subb2进行处理
solution(suba2, subb2);
// 输出字符串a的第一个字符
cout << a[0];
}
int main()
{
while(1)
{
int n;
cin >> n;
// 如果n为0,则跳出循环
if(n == 0)
{
break;
}
string a, b;
cin >> a >> b;
// 调用solution函数进行处理,并输出结果
solution(a, b);
cout << endl;
}
return 0;
}