【备战秋招】每日一题:2023.04.09-招商银行-第二题-特殊的01串

题目内容

塔子哥是一名信息学竞赛的热爱者,他从小就对编程和算法有着浓厚的兴趣。他经常参加各种信息学竞赛,从NOIP到NOI,再到IOI,他都有着不俗的成绩。他的梦想是成为一名优秀的程序员,为人类社会贡献自己的智慧。

有一天,塔子哥收到了一个来自国际信息学奥林匹克竞赛(IOI)组委会的邀请函,邀请他参加一个特别的挑战。这个挑战是由一位神秘的信息学大师设计的,只有通过了这个挑战,才能得到大师的认可和指导。塔子哥对此感到非常兴奋,他立刻打开了邀请函中附带的链接,进入了一个在线评测系统。

在评测系统中,塔子哥看到了这样一个题面:

给定一个长度为 n n n01 串,你需要将其中的一些数字进行修改,使得所有连续的 0 的长度都是 a a a 的倍数,而所有连续的 1 的长度都是 b b b 的倍数。

为了解决这个问题,你可以对串中的某些位置进行修改,将 0 变为 1 或者将 1 变为 0 。但是你希望尽可能地少进行修改操作。

现在,请你告诉我你最少需要进行多少次操作才能达到上述要求。

输入描述

第一行输入三个正整数 n n n a a a b b b

第二行输入一个长度为 n n n 的仅包含字符 01 的字符串。

1 ≤ n , a , b ≤ 200000 1\le n,a,b \le 200000 1n,a,b200000

输出描述

使得字符串合法的最小操作次数,特别的,如果无论如何字符串都不能合法,请输出 − 1 -1 1

样例1

输入

5 2 1
01011

输出

2

样例2

输入

8 4 2
01010001

输出

3

样例3

输入

8 3 3
01010001

输出

-1

思路:动态规划 + 前缀最值优化

Step1:朴素dp

考虑动态规划,做过Leetcode-132 或者 CodeFun2000-P1168 这种题的话,就会很自然的想到一个 O ( n 2 ) O(n^2) O(n2)的朴素 d p dp dp:

状态:

d p i , j ∈ { 0 , 1 } dp_{i,j \in \{0,1\}} dpi,j{0,1} 代表考虑了字符串的前 i i i个位置并且最后一段是 j j j 的最小修改次数。

转移:

考虑最后这个连续0/1段在哪个地方停止,转移方程如下:
d p i , 0 = m i n j < i ∧ ( j + 1 ) ≡ i ( m o d   a ) { m i n ( d p j , 0 , d p j , 1 ) + C o u n t j + 1 , i , 1 } dp_{i,0} = \underset{j < i \wedge (j+1) \equiv i(mod\ a)}{min}\{min(dp_{j,0},dp_{j,1}) + Count_{j+1,i,1}\} \\ dpi,0=j<i(j+1)i(mod a)min{min(dpj,0,dpj,1)+Countj+1,i,1}
其中 C o u n t l , r , 1 Count_{l,r,1} Countl,r,1 代表区间 [ l , r ] [l,r] [l,r] 1 1 1 的个数。 d p i , 1 dp_{i,1} dpi,1同理。 复杂度为 O ( n 3 ) O(n^3) O(n3) , 前缀和优化成 O ( n 2 ) O(n^2) O(n2)

Step2:前缀最值优化

让我们拆一下 C o u n t l , r Count_{l,r} Countl,r 成差分形式,把常量提出来得到:
$$
dp_{i,0} = \underset{j < i \wedge (j+1) \equiv i(mod\ a)}{min}{min(dp_{j,0},dp_{j,1}) + perOne_{i}-perOne_{j}} \ \

= perOne_{i}+\underset{j < i \wedge (j+1) \equiv i(mod\ a)}{min}{min(dp_{j,0},dp_{j,1}) -perOne_{j}}
KaTeX parse error: Can't use function '$' in math mode at position 50: …形象化的来讲,就是开a个桶,第$̲k$个桶维护$i, s.t.i…
mpA_i = \underset{j < i \wedge (j+1) \equiv i(mod\ a)}{min}{min(dp_{j,0},dp_{j,1}) -perOne_{j}} \
= min(mpA_{i-a} , min(dp_{j,0},dp_{j,1}) -perOne_{j}) \ \ \ \ \ \ -转移A
$$

那么
d p i , 0 = p e r O n e i + m p A i        − 转移 B dp_{i,0} = perOne_{i}+mpA_i \ \ \ \ \ \ -转移B dpi,0=perOnei+mpAi      转移B

对于 d p i , 1 dp_{i,1} dpi,1 同理可得。

复杂度:

O ( n ) O(n) O(n)

实现细节见代码

代码

python

inf = 10**9
n , a , b = list(map(int , input().split()))
s = input()
# cnt[i][0] / cnt[i][1] 代表前缀[1,i]中 0/1的个数
cnt = [[0 , 0]]
for x in s:
	cnt.append(cnt[-1][:])
	v = ord(x) - ord('0')
	cnt[-1][v] += 1
    
dp = [[inf , inf] for i in range(n + 1)]
mp_a = [inf for _ in range(a)]
mp_b = [inf for _ in range(b)]
mp_a[0] = 0 , 
mp_b[0] = 0
dp[0][0] = 0
dp[0][1] = 0

for i in range(1 , n + 1):
    # 见题解中的转移B
	if mp_a[i % a] != inf:
		dp[i][0] = cnt[i][1] + mp_a[i % a]
	if mp_b[i % b] != inf:
		dp[i][1] = cnt[i][0] + mp_b[i % b]
    # 见题解中的转移A
	if min(dp[i]) != inf:
		mp_a[i % a] = min(mp_a[i % a] , min(dp[i]) - cnt[i][1])
		mp_b[i % b] = min(mp_b[i % b] , min(dp[i]) - cnt[i][0])
if min(dp[n]) == inf:
	print(-1)
else:
	print(min(dp[n]))

C++ (from 2333)

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx,avx2,fma")

#include <bits/stdc++.h>

using namespace std;

#define out(x) cout << #x << '=' << x << endl
#define out2(x, y) cout << #x << '=' << x << ',' << #y << '=' << y << endl 
#define no cout << "No" << endl; return
#define yes cout << "Yes" << endl; return
#define outvec(a) for (auto &v : a) { cout << v << ' '; } cout << endl
#define lowbit(x) (x & -x)
#define gcd __gcd 
#define inf 0x3f3f3f3f3f3f3f3fLL
#define infi 0x3f3f3f3f

using ll = long long;
using pii = pair<int, int>;

template<typename T> ostream & operator << (ostream &out,const set<T>&obj){out<<"set(";for(auto it=obj.begin();it!=obj.end();it++) out<<(it==obj.begin()?"":", ")<<*it;out<<")";return out;}
template<typename T1,typename T2> ostream & operator << (ostream &out,const map<T1,T2>&obj){out<<"map(";for(auto it=obj.begin();it!=obj.end();it++) out<<(it==obj.begin()?"":", ")<<it->first<<": "<<it->second;out<<")";return out;}
template<typename T1,typename T2> ostream & operator << (ostream &out,const pair<T1,T2>&obj){out<<"<"<<obj.first<<", "<<obj.second<<">";return out;}
template<typename T> ostream & operator << (ostream &out,const vector<T>&obj){out<<"vector(";for(auto it=obj.begin();it!=obj.end();it++) out<<(it==obj.begin()?"":", ")<<*it;out<<")";return out;}


void solve() {
	int n, a, b;
	cin >> n >> a >> b;
	string s;
	cin >> s;
	s = " " + s;
	vector<int> cnt0(n + 1), cnt1(n + 1);
	for (int i = 1; i <= n; i++) {
		cnt0[i] = cnt0[i - 1];
		cnt1[i] = cnt1[i - 1];
		if (s[i] == '0') {
			cnt0[i]++;
		} else {
			cnt1[i]++;
		}
	}
	vector<int> preA(a + 1, infi), preB(b + 1, infi);
	preA[0] = preB[0] = 0;
	
	for (int i = 1; i <= n; i++) {
		int costA = preA[i % a] + cnt1[i];
		int costB = preB[i % b] + cnt0[i];
		
		preA[i % a] = min(preA[i % a], costB - cnt1[i]);
		preB[i % b] = min(preB[i % b], costA - cnt0[i]);
		if (i == n) {
			int ans = min(costA, costB);
			if (ans >= infi) {
				cout << -1 << endl;
			} else {
				cout << ans << endl;
			}
		}
	}
}

int main(void) {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    int t = 1;
	//cin >> t;
    
    while (t--) {
    	solve();
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值