【备战秋招】每日一题:2023.03.19-米哈游机试-第三题-塔子哥的无限字符串

Thearticlediscussesamathematiciansproblemoncountingcommasandsemicolonsinaninfinitestringrepresentingthesetofnaturalnumbersusingbinarysearchandpositioncalculationtechniques.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目内容

在某个神秘的数字世界中,有一位数学家塔子哥。他是这个数字世界中最聪明的人,他喜欢研究各种数字规律。

今天,塔子哥得到了一个无限长的字符串,该字符串代表着整个自然数集。这个字符串由数字字符 ,; 以及数字组成,其中每三个数字由一个分号隔开,其它的数字由逗号隔开。

具体字符串为:1,2,3;4,5,6;7,8,9;10,11,12;13,14......

塔子哥对这个字符串产生了浓厚的兴趣,并想知道该字符串的第 l l l 个字符到第 r r r 个字符之间有多少个逗号和分号。

输入描述

第一行输入一个正整数 t t t ,代表询问次数。

接下来的 t t t 行,每行输入两个正整数 l l l r r r ,代表一次询问。

1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104

1 ≤ l ≤ r ≤ 1 0 12 1\le l\le r\le 10^{12} 1lr1012

输出描述

输出 t t t 行,每行输入两个整数,用空格隔开。

分别代表 , 的数量和 ; 的数量。

样例

输入

2
3 6
8 10

输出

1 1
2 0

样例解释

3 3 3 个字符到第 6 6 6 个字符是 "2,3;" ,包含一个逗号和一个分号。

8 8 8 个字符到第 10 10 10 个字符是 ”,5," ,包含 2 2 2 个逗号,没有分号。

题目思路

解法1:二分答案

​ 总的思路是:先二分找第 l , r l,r l,r个字符位于第几个数。然后差分计算两个数之间有多少个逗号和分号即可。

​ 具体的:先实现一个函数,求第 i i i个数的最后一个数位,位于第几个字符。然后就可以轻松的使用二分答案求第 i i i个字符位于第几个数内。

​ 这里注意,字符位于逗号/分号上,也算作它位于后面那一个数。具体细节见代码注释。

代码

python

# calc1 求 从 x 到 相同数位长度的数字的最小值 的符号个数 
# 例如:calc1(3) 求从 3 到 1的符号个数
# calc1(30) 求从 30 到 10 的符号个数
# calc1(300) 求从 300 到 100 的符号个数
def calc1(x , dn):
    s = ten[dn - 1]
    num = x - s + 1
    res = num * dn + num - 1
    return res 
# ten 预处理 10^k
ten = [int(pow(10 , i)) for i in range(14)]
# dd 预处理 10^k ~ 10^(k+1) 这整段的长度
dd = [0] + [calc1(ten[i] - 1 , i) + 1 for i in range(1 , 14)]
# res - dd的前缀和
res = [0]
for i in range (1 , 14):
    res.append(res[-1] + dd[i])
# calc2 求 从 x 到 1 的符号个数
def calc2 (x , dn):
    return calc1(x , dn) + res[dn - 1]
# bs 查找第x个字符位于第几个数内
def bs (x):
    l = 1
    r = 1000000000000
    while l <= r:
        mid = (l + r) // 2
        dn = len(str(mid))
        if x <= calc2(mid , dn):
            r = mid - 1
        else:
            l = mid + 1
    return l
# calc3计算[1,x]内分号个数
def calc3 (x):
    return (x - 1) // 3
# calc4计算[1,x]内逗号个数
def calc4 (x):
    return x - 1 - calc3(x)
t = int(input())
for w in range (t):
    x , y = list(map(int , input().split()))
    # 注意左端点要-1. 差分的特点
    x -= 1
 	# 找左右端点代表的是序列里的第几个数
    xx = bs(x)
    yy = bs(y)
    # 计算逗号和分号个数
    num1 = calc3(yy) - calc3(xx)
    num2 = calc4(yy) - calc4(xx)
    # 输出
    print (num2 , num1)

C++ (感谢gwen大佬贡献的std)

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
ll pos[] = {2 * 9, 3 * (ll)9e1, 4 * (ll)9e2, 5 * (ll)9e3, 6 * (ll)9e4, 7 * (ll)9e5, 8 * (ll)9e6, 9 * (ll)9e7, 10 * (ll)9e8, 11 * (ll)9e9, 12 * (ll)9e10, 13 * (ll)9e11};
ll cnt[] = {1LL, 10LL, 100LL, 1000LL, 10000LL, 100000LL, 1000000LL, 10000000LL, 100000000LL, 1000000000LL, 10000000000LL, 100000000000LL, 1000000000000LL};
int main() {
    cout << log2(1000000000000LL) << endl;
	int T;
	scanf("%d", &T);
	while(T--) {
		ll l, r;
		scanf("%lld%lld", &l, &r);
		l--;
		r--;
		ll lnum, rnum;
		ll lpos, rpos;
		ll lcnt, rcnt;
		for(int i = 0; i < 12; i++) {
			if(l > pos[i]) {
				l -= pos[i];
			}
			else {
				lnum = l / (i + 2) + cnt[i];
				lpos = l % (i + 2);
				lcnt = i + 2;
				break;
			}

		}
		for(int i = 0; i < 12; i++) {
			if(r > pos[i]) {
				r -= pos[i];
			}
			else {
				rnum = r / (i + 2) + cnt[i];
				rpos = r % (i + 2);
				rcnt = i + 2;
				break;
			}
		}
		ll cnt1 = (rnum - 1) / 3 - (lnum - 1) / 3;
		ll cnt2 = (rnum - lnum) - cnt1;
		if(rpos == rcnt - 1) {
			if(rnum % 3 == 0) cnt1++;
			else cnt2++;
		}
		printf("%lld %lld\n", cnt2, cnt1);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值