题目内容
在某个神秘的数字世界中,有一位数学家塔子哥。他是这个数字世界中最聪明的人,他喜欢研究各种数字规律。
今天,塔子哥得到了一个无限长的字符串,该字符串代表着整个自然数集。这个字符串由数字字符 ,
和 ;
以及数字组成,其中每三个数字由一个分号隔开,其它的数字由逗号隔开。
具体字符串为:1,2,3;4,5,6;7,8,9;10,11,12;13,14......
。
塔子哥对这个字符串产生了浓厚的兴趣,并想知道该字符串的第 l l l 个字符到第 r r r 个字符之间有多少个逗号和分号。
输入描述
第一行输入一个正整数 t t t ,代表询问次数。
接下来的 t t t 行,每行输入两个正整数 l l l 和 r r r ,代表一次询问。
1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1≤t≤104
1 ≤ l ≤ r ≤ 1 0 12 1\le l\le r\le 10^{12} 1≤l≤r≤1012
输出描述
输出 t t t 行,每行输入两个整数,用空格隔开。
分别代表 ,
的数量和 ;
的数量。
样例
输入
2
3 6
8 10
输出
1 1
2 0
样例解释
第
3
3
3 个字符到第
6
6
6 个字符是 "2,3;"
,包含一个逗号和一个分号。
第
8
8
8 个字符到第
10
10
10 个字符是 ”,5,"
,包含
2
2
2 个逗号,没有分号。
题目思路
解法1:二分答案
总的思路是:先二分找第 l , r l,r l,r个字符位于第几个数。然后差分计算两个数之间有多少个逗号和分号即可。
具体的:先实现一个函数,求第 i i i个数的最后一个数位,位于第几个字符。然后就可以轻松的使用二分答案求第 i i i个字符位于第几个数内。
这里注意,字符位于逗号/分号上,也算作它位于后面那一个数。具体细节见代码注释。
代码
python
# calc1 求 从 x 到 相同数位长度的数字的最小值 的符号个数
# 例如:calc1(3) 求从 3 到 1的符号个数
# calc1(30) 求从 30 到 10 的符号个数
# calc1(300) 求从 300 到 100 的符号个数
def calc1(x , dn):
s = ten[dn - 1]
num = x - s + 1
res = num * dn + num - 1
return res
# ten 预处理 10^k
ten = [int(pow(10 , i)) for i in range(14)]
# dd 预处理 10^k ~ 10^(k+1) 这整段的长度
dd = [0] + [calc1(ten[i] - 1 , i) + 1 for i in range(1 , 14)]
# res - dd的前缀和
res = [0]
for i in range (1 , 14):
res.append(res[-1] + dd[i])
# calc2 求 从 x 到 1 的符号个数
def calc2 (x , dn):
return calc1(x , dn) + res[dn - 1]
# bs 查找第x个字符位于第几个数内
def bs (x):
l = 1
r = 1000000000000
while l <= r:
mid = (l + r) // 2
dn = len(str(mid))
if x <= calc2(mid , dn):
r = mid - 1
else:
l = mid + 1
return l
# calc3计算[1,x]内分号个数
def calc3 (x):
return (x - 1) // 3
# calc4计算[1,x]内逗号个数
def calc4 (x):
return x - 1 - calc3(x)
t = int(input())
for w in range (t):
x , y = list(map(int , input().split()))
# 注意左端点要-1. 差分的特点
x -= 1
# 找左右端点代表的是序列里的第几个数
xx = bs(x)
yy = bs(y)
# 计算逗号和分号个数
num1 = calc3(yy) - calc3(xx)
num2 = calc4(yy) - calc4(xx)
# 输出
print (num2 , num1)
C++ (感谢gwen大佬贡献的std)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pos[] = {2 * 9, 3 * (ll)9e1, 4 * (ll)9e2, 5 * (ll)9e3, 6 * (ll)9e4, 7 * (ll)9e5, 8 * (ll)9e6, 9 * (ll)9e7, 10 * (ll)9e8, 11 * (ll)9e9, 12 * (ll)9e10, 13 * (ll)9e11};
ll cnt[] = {1LL, 10LL, 100LL, 1000LL, 10000LL, 100000LL, 1000000LL, 10000000LL, 100000000LL, 1000000000LL, 10000000000LL, 100000000000LL, 1000000000000LL};
int main() {
cout << log2(1000000000000LL) << endl;
int T;
scanf("%d", &T);
while(T--) {
ll l, r;
scanf("%lld%lld", &l, &r);
l--;
r--;
ll lnum, rnum;
ll lpos, rpos;
ll lcnt, rcnt;
for(int i = 0; i < 12; i++) {
if(l > pos[i]) {
l -= pos[i];
}
else {
lnum = l / (i + 2) + cnt[i];
lpos = l % (i + 2);
lcnt = i + 2;
break;
}
}
for(int i = 0; i < 12; i++) {
if(r > pos[i]) {
r -= pos[i];
}
else {
rnum = r / (i + 2) + cnt[i];
rpos = r % (i + 2);
rcnt = i + 2;
break;
}
}
ll cnt1 = (rnum - 1) / 3 - (lnum - 1) / 3;
ll cnt2 = (rnum - lnum) - cnt1;
if(rpos == rcnt - 1) {
if(rnum % 3 == 0) cnt1++;
else cnt2++;
}
printf("%lld %lld\n", cnt2, cnt1);
}
return 0;
}