题目内容
塔子哥最近开始研究了植物病毒学,他发现了一种名为 X X X 的超级病毒,该病毒在农作物间的传染性极强。现有一块 N N N 行 M M M 列的农田,每一个格子都栽种着一株植物,每株植物只有感染了病毒和未感染病毒两种状态,假定已经感染病毒的植物用 0 0 0 表示,未感染的植物用 1 1 1 表示。
塔子哥需要使这块农田里所有植物都感染上病毒,以获得更多的实验材料。已知塔子哥一次操作只能让一株植物感染上病毒,当这一株未感染病毒的植物感染了 X X X 病毒,那么与它相邻的上、下、左、右、左上、左下、右上、右下这八个方向的未感染植物都会发生感染,进一步地,当一个原本未感染的植物发生感染后,与其相邻的 8 8 8个方向上的未感染植物均会发生感染。
给定一个样例如下:
1 0 1
0 1 0
1 0 1
按照上述规则,塔子哥最少需要操作 1 1 1 次后,所有的植物都会感染X病毒。
请问,给定一个由 0 0 0 和 1 1 1 组成的农田矩阵,塔子哥最少需要操作几次后,农田里所有植物都会感染上 X X X 病毒。
输入描述
第一行输入两个数字 N N N , M M M ( 1 ≤ N , M ≤ 1000 ) (1 \leq N,M \leq 1000) (1≤N,M≤1000),分别表示二维矩阵的行数,列数,并用空格隔开
下面输入 N N N 行,每行 M M M 个数字,并用空格隔开
输出描述
最少需要点击几次后,矩阵中所有数字均为 0 0 0 。
样例
输入
3 3
1 0 1
0 1 0
1 0 1
输出
1