【备战秋招】每日一题:2023.05.03-华为od-笔试(第二题)-开心消消乐

题目内容

塔子哥最近开始研究了植物病毒学,他发现了一种名为 X X X 的超级病毒,该病毒在农作物间的传染性极强。现有一块 N N N M M M 列的农田,每一个格子都栽种着一株植物,每株植物只有感染了病毒和未感染病毒两种状态,假定已经感染病毒的植物用 0 0 0 表示,未感染的植物用 1 1 1 表示。

塔子哥需要使这块农田里所有植物都感染上病毒,以获得更多的实验材料。已知塔子哥一次操作只能让一株植物感染上病毒,当这一株未感染病毒的植物感染了 X X X 病毒,那么与它相邻的上、下、左、右、左上、左下、右上、右下这八个方向的未感染植物都会发生感染,进一步地,当一个原本未感染的植物发生感染后,与其相邻的 8 8 8个方向上的未感染植物均会发生感染。

给定一个样例如下:

1 0 1
0 1 0
1 0 1

按照上述规则,塔子哥最少需要操作 1 1 1 次后,所有的植物都会感染X病毒。

请问,给定一个由 0 0 0 1 1 1 组成的农田矩阵,塔子哥最少需要操作几次后,农田里所有植物都会感染上 X X X 病毒。

输入描述

第一行输入两个数字 N N N , M M M ( 1 ≤ N , M ≤ 1000 ) (1 \leq N,M \leq 1000) (1N,M1000),分别表示二维矩阵的行数,列数,并用空格隔开

下面输入 N N N 行,每行 M M M 个数字,并用空格隔开

输出描述

最少需要点击几次后,矩阵中所有数字均为 0 0 0

样例

输入

3 3
1 0 1
0 1 0
1 0 1

输出

1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值