题目描述
塔子哥在海边建了一个沙堡乐园。
里面有一个巨大的沙堡,塔子哥每年都会增加这个沙堡的层数,但也有一定的规律:
1、沙堡底层序号为 1 1 1 ;
2、沙堡的任何一个部分每年最多只能增加一个小沙堡(也可能不增加) ;
3、新建的小沙堡一定是独立的,没有和其他小沙堡连接(除了父亲沙堡);
现在塔子哥准备了今年沙堡的示意图和明年沙堡的设计图,他想让你告诉他,第一座沙堡明年能否变成第二座沙堡。
输入描述
输入第一行为 T T T ,表示 T T T 组数据。( 1 ≤ T ≤ 10 1≤T≤10 1≤T≤10 )
对于每一组数据,包含4行:
第一行是第一座沙堡的个数: n n n ,第二行有 n − 1 n-1 n−1 个数字 l i ( i = 2 , 3 , … , n ) l_i(i=2,3, \dots ,n) li(i=2,3,…,n) 表示第 i i i 个沙堡的是建在第 l i ( i = 2 , 3 , … , n ) l_i(i=2,3, \dots ,n) li(i=2,3,…,n) 个沙堡上的。
第三行是第二座沙堡的个数: m m m ,第四行有 m − 1 m-1 m−1 个数字 r i ( i = 2 , 3 , … , n ) r_i(i=2,3, \dots ,n) ri(i=2,3,…,n) 表示第 i i i 个沙堡是建在第 r i ( i = 2 , 3 , … , n ) r_i(i=2,3, \dots ,n) ri(i=2,3,…,n)个沙堡上的。
( 1 ≤ n , m ≤ 50000 , 1 ≤ l i , r i ≤ i 1≤n,m≤50000,1≤l_i,r_i≤i 1≤n,m≤50000,1≤li,ri≤i)
输入保证两座沙堡的对应序号相同,即两座沙堡的共有点的父节点相同,且第二座包括第一座的所有节点。
输出描述
如果第一座明年有可能建成第二座,输出“yes ”,否则输出”no”.
样例
样例输入
1
5
1 1 1 4
8
1 1 1 4 5 1 4
样例输出
yes