题目描述
塔子哥在一个 m ∗ n m*n m∗n 大小的崎岖山地上进行跑步锻炼。这个场地由一系列的上坡、下坡组成,场地各点位的高度值记录于二位数组 h h h 中,由相邻位置到达对应点位的减速值记录于二维数组 o o o中。
已知塔子哥初始速度为 1 1 1 ,当他从高度为 h 1 h1 h1 的位置跑到高度为 h 2 h2 h2 、减速值为 o 2 o2 o2 的相邻位置(可从上下左右四个方向)时,速度变化值为 h 1 − h 2 − o 2 h1 - h2 - o2 h1−h2−o2 ( 大于 0 0 0 为加速 ,小于 0 0 0为减速)。速度不会为 0 0 0 或者负值。
请问塔子哥到达哪些点位时速度依旧维持为 1 1 1 ?请你求出这些位置的个数是多少。
输入描述
输入第一行为场地大小 m m m, n n n( 1 1 1 ≤ \leq ≤ m ≤ \leq ≤ 100 100 100 , 1 1 1 ≤ \leq ≤ n n n ≤ \leq ≤ 100 100 100)
输入第二行为选手初始位置
输入第三行为场地每个点位的高度值
h
[
i
]
[
j
]
h[i] [j]
h[i][j],场地高度的范围为
[
0
,
100
]
[0,100]
[0,100]
输入第四行为每个点位的减速值
o
[
i
]
[
j
]
o[i] [j]
o[i][j],减速值的范围在
[
0
,
100
]
[0,100]
[0,100]
输出描述:
输出速度为 1 1 1 的位置的个数
样例1
输入
2,2
1,1
5,0 0,6
0,6 7,0
输出
1
解释:
第一行为场地大小为 2 ∗ 2 2*2 2∗2;
第二行为塔子哥的初始位置坐标;
第三行分别代表 h [ 0 ] [ 0 ] = 5 ; h [ 0 ] [ 1 ] = 0 ; h [ 1 ] [ 0 ] = 0 ; h [ 1 ] [ 1 ] = 6 h[0][0] =5;h[0][1] = 0;h[1][0] = 0;h[1][1] =6 h[0][0]=5;h[0][1]=0;h[1][0]=0;h[1][1]=6;
第四行分别代表 o [ 0 ] [ 0 ] = 0 ; o [ 0 ] [ 1 ] = 6 ; o [ 1 ] [ 0 ] = 7 ; o [ 1 ] [ 1 ] = 0 o[0][0] = 0;o[0][1] = 6;o[1][0] =7;o[1][1] = 0 o[0][0]=0;o[0][1]=6;o[1][0]=7;o[1][1]=0;
塔子哥从坐标[ 1 1 1][ 1 1 1]的位置出发,此为位置高度为 6 6 6, 减速值为 0 0 0 。选手到达[ 0 0 0, 1 1 1]处位置恰好为 1 1 1;速度的变化值为 0 0 0,初始速度为 1 1 1 ,即到达[ 0 0 0, 1 1 1]处位置时,速度恰好为 1 1 1
样例2
输入
2,2
0,0
0,0 0,0
0,0 0,0
输出
3
解释:场地大小 2 ∗ 2 2*2 2∗2 ,选手从坐标 [ 0 0 0, 0 0 0] 的位置出发,此位置高度为 0 0 0 ,减速值为 0 0 0 。选手到达[ 0 0 0, 1 1 1],[ 1 1 1, 0 0 0] , [ 1 1 1, 1 1 1]三处位置时,速度恰好为 1 1 1。