一、需求分析
输入方程( ax^2 + bx + c = 0 ) 的系数a,b,c。求其根。
首先,咱们得明白一元二次方程的一般形式是 ax^2 + bx + c = 0 ,而我们的目标就是根据用户输入的 a、b、c 这三个系数来求出方程的根。
在代码开始的时候,我们使用 input 函数让用户输入 a、b、c 的值,并且把输入的内容转换成浮点数,因为系数可能是小数。
接下来,计算一个很重要的东西叫“判别式”,它的表达式是 b**2 - 4*a*c 。 然后根据判别式的值来判断方程根的情况: 如果判别式大于 0 ,那就说明方程有两个不同的实数根。计算这两个根的公式是 (-b + math.sqrt(discriminant)) / (2*a) 和 (-b - math.sqrt(discriminant)) / (2*a) 。这里的 math.sqrt 是用来求平方根的。 比如说,如果方程是 x^2 - 4x + 3 = 0 ,那么 a = 1,b = -4,c = 3 。判别式就是 (-4)**2 - 4*1*3 = 16 - 12 = 4 ,大于 0 ,所以有两个根,分别是 (4 + 2) / 2 = 3 和 (4 - 2) / 2 = 1 。 如果判别式等于 0 ,那就只有一个实数根,这个根就是 -b / (2*a) 。
例如,方程是 x^2 - 2x + 1 = 0 ,a = 1,b = -2,c = 1 ,判别式是 (-2)**2 - 4*1*1 = 0 ,根就是 2 / 2 = 1 。 如果判别式小于 0 ,那就说明方程没有实数根,直接输出这个信息就好。 比如说,如果方程是 x^2 + 2x + 3 = 0 ,a = 1,b = 2,c = 3 ,判别式是 2**2 - 4*1*3 = 4 - 12 = -8 ,小于 0 ,所以没有实数根。
二、完整代码
import math
# 输入系数
a = float(input("请输入系数 a: "))
b = float(input("请输入系数 b: "))
c = float(input("请输入系数 c: "))
# 计算判别式
discriminant = b**2 - 4*a*c
if discriminant > 0:
# 有两个不同的实数根
root1 = (-b + math.sqrt(discriminant)) / (2*a)
root2 = (-b - math.sqrt(discriminant)) / (2*a)
print("方程的两个根分别为:", root1, "和", root2)
elif discriminant == 0:
# 有一个实数根
root = -b / (2*a)
print("方程的根为:", root)
else:
# 没有实数根
print("方程没有实数根")