- 博客(11)
- 收藏
- 关注
原创 Lesson 4:大模型关键技术入门
人工智能的 “基石”:所有 AI 应用(图像识别、语音助手、推荐系统)的底层核心是 “神经网络”,它模拟人脑的神经元连接,通过数据学习规律。深度神经网络(DNN):由多层神经网络组成,核心作用是 “提取数据特征并学习规律”,比如识别一张图片是不是猫、判断一段文字的情感是正面还是负面。通俗类比:DNN 像 “发动机”,是 AI 的动力核心,但只能适配单一任务(比如专门的图像识别发动机、专门的情感分析发动机)。
2026-01-12 18:00:00
1506
原创 Lesson 3:大模型技术原理与训练过程
掌握大模型的核心定义、能力边界与局限,能清晰区分 AI、生成式 AI 与大模型。理解 Transformer 架构的核心逻辑(自注意力机制、token/embedding),无需深入算法实现。精通大模型训练三步骤(预训练、微调、RLHF),了解微调的完整流程与实操要点。熟悉多模态模型、推理模型的基础概念与应用场景。具备与算法协作的基础认知,能规避大模型使用中的常见坑(如幻觉、上下文限制)。广义大模型。
2026-01-12 12:00:00
732
原创 Lesson 2:AI 产品入门与 AI 产品经理核心知识
决策式 AI 的本质是 “选”—— 根据已知数据预测未来,从多个可能中选择最优行动方案,不产生新内容,专注于 “做什么” 的决策。生成式 AI 的本质是 “造”—— 基于海量数据训练,生成全新的文本、图像、语音等内容,专注于 “产出什么” 的创作。深度学习是机器学习的分支,模仿人脑 “层层思考” 的逻辑,通过多层神经网络,自动从数据中学习规律,无需人工写死规则。NLP 是让计算机 “听懂、读懂、写懂” 人类语言,并用人类习惯的方式交流的技术,是人机交互的核心桥梁。
2026-01-10 13:52:37
998
原创 Lesson One:AI 产品经理基础认知与就业规划
AI vs 生成式 AI(AIGC):AI 是大概念,生成式 AI 是 AI 的子集(就像 “水果” 和 “苹果” 的关系)。大模型的分类:通用大模型:“通才”—— 啥都懂但不精(比如 ChatGPT、豆包、文心一言),适用于通用场景(写文案、问答)。垂类大模型(行业 / 场景大模型):“专才”—— 在特定领域比通用模型强(比如金融大模型、医疗大模型),比如用友的企业服务大模型。
2026-01-10 13:11:56
981
原创 Python:通过“廖雪峰Python教程”或Coursera《Python for Everybody》快速掌握语法、数据结构、文件读写(重点学习处理Excel/CSV)。
本文摘要: Python工单处理实战指南涵盖三大核心内容:1)Python基础语法,包括环境搭建、变量类型、流程控制和函数封装,特别强调工单处理场景的应用;2)核心数据结构,详细讲解列表、字典等结构的增删改查操作,配合工单数据处理案例;3)文件读写技术,重点介绍CSV/Excel文件的处理,对比csv模块与pandas库的优劣,提供工单导入导出的完整代码示例。教材突出实战性,所有知识点均配有催收工单场景的代码案例,建议按照"基础语法→数据结构→文件处理"的顺序学习,优先掌握pandas库
2026-01-05 12:00:00
1546
原创 智能运营岗:基于历史投诉数据的风险预警模型构想
为提升运营智能化与合规前瞻性,本模型旨在通过挖掘历史投诉数据中的规律与特征,构建一套。与IT/运营部门协作,设计系统嵌入方案(如CRM系统弹窗、名单导出接口)。单日联系次数、非工作时间联系占比、话术关键词命中(如“律师”、“上门”):形成“合规智慧看板”,集成风险预警、根因分析、策略推荐功能。:定期生成高风险客户、坐席或作业模式清单,供质检与培训聚焦。训练模型并优化特征组合,通过AUC、KS、召回率等指标评估。:坐席工龄、绩效、历史投诉关联记录、培训记录等。
2026-01-03 12:00:00
1492
原创 智能运营岗:现有质检与投诉系统中AI应用机会分析报告
当前质检与投诉处理系统主要依赖人工抽样、规则引擎与经验判断,存在效率瓶颈与覆盖局限。为提升运营智能化水平、强化合规与消保能力,本报告旨在系统分析现有流程中可引入AI技术的关键环节,探索智能化改造路径,推动从“人工质检”向“智能运营”的转型。通过分阶段实施,可逐步构建以AI为核心的智能运营体系,为业务合规、客户体验与运营效率提供持续赋能。NLP自动提取工单主题,分类并分配至对应处理团队(合规、运营、客服)基于质检与投诉数据,自动生成周/月报,突出风险点与趋势。当前质检与投诉系统中存在明确的AI应用机会,
2026-01-02 08:00:00
1776
原创 AI客服核心概念手册
数据标注是对语料库等原始数据进行加工处理的过程,通过人工或工具为数据添加明确的“标签”(如意图标签、实体标签),使原始数据具备可理解性,以便AI模型能够学习到数据与需求之间的对应关系。例如,在搭建电商AI客服时,语料库需包含“商品尺寸咨询”“物流延迟投诉”“退换货流程询问”等各类用户常见话术,以及对应的标准回复、问题解决方案;:语料库(Corpus)是指为满足AI模型训练、优化需求,收集并整理的大规模、结构化的语言数据集合,涵盖客服场景下的用户咨询话术、客服回复话术、常见问题及解决方案等内容。
2025-12-31 12:10:07
440
原创 智能客服核心模块笔记
一、智能客服核心模块解析(一)问答库(二)意图识别(三)转人工逻辑(四)运营指标二、银行信用卡智能客服现有产品分析(一)核心产品形态(二)核心技术支撑(三)产品核心优势
2025-12-30 11:10:59
1008
原创 智能客服系统信用卡服务功能分析
摘要:本文对比了阿里云智能客服和智齿客服在信用卡服务中的三大核心功能实现方式。账单查询方面,阿里云通过大模型实现精准识别和实时数据展示,智齿采用渐进式引导和可视化呈现;还款提醒功能上,阿里云侧重多渠道智能触达,智齿则强调个性化定制;投诉处理环节,两系统均采用智能分流技术,阿里云突出情绪识别,智齿注重多级架构。智能客服显著提升了服务效率(查询效率提升80%+)、降低了银行人力成本(30-50%),同时改善了用户体验(响应时间<1秒)。
2025-12-28 14:53:19
850
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅