【算法】递归+回溯+剪枝:回溯算法介绍 + 实践(46.全排列)

目录

一、回溯算法介绍

什么是回溯算法

回溯算法的模板

二、实践 

1、题目链接

2、题目

​3、解法(回溯+剪枝)

1)优先画出决策树

4、代码


一、回溯算法介绍

什么是回溯算法

回溯算法是⼀种经典的递归算法,通常用于解决组合问题、排列问题和搜索问题等。

回溯算法的基本思想:从⼀个初始状态开始,按照⼀定的规则向前搜索,当搜索到某个状态⽆法前进时,回退到前⼀个状态,再按照其他的规则搜索。

回溯算法在搜索过程中维护⼀个状态树,通过遍历状态树来实现对所有可能解的搜索。

回溯算法的核心思想:“试错”,即在搜索过程中不断地做出选择,如果选择正确,则继续向前搜 索;否则,回退到上⼀个状态,重新做出选择。回溯算法通常⽤于解决具有多个解,且每个解都需要 搜索才能找到的问题。

回溯算法的模板

void backtrack(vector<int>& path, vector<int>& choice, ...) {

	// 满⾜结束条件
	if (/* 满⾜结束条件 */) {

		// 将路径添加到结果集中
		res.push_back(path);
		return;

	}


	// 遍历所有选择
	for (int i = 0; i < choices.size(); i++) {

		// 做出选择
		path.push_back(choices[i]);
		// 做出当前选择后继续搜索
		backtrack(path, choices);
		// 撤销选择
		path.pop_back();

	}
}

其中, path 表示当前已经做出的选择, choices 表示当前可以做的选择。
在回溯算法中,我们需要做出选择,然后递归地调⽤回溯函数。
如果满足结束条件,则将当前路径添加到结果集中;否则, 我们需要撤销选择,回到上⼀个状态,然后继续搜索其他的选择。

回溯算法的时间复杂度通常较⾼,因为它需要遍历所有可能的解。但是,回溯算法的空间复杂度较 低,因为它只需要维护⼀个状态树。

在实际应⽤中,回溯算法通常需要通过剪枝等方法进行优化,以减少搜索的次数,从而提高算法的效率。

对于我们解题最重要的就是画出决策树,把所有情况的详细的列出来。根据决策树,进行不同方面的消息。

二、实践 

1、题目链接

46.全排列(LeetCode)

2、题目


3、解法(回溯+剪枝)

1)优先画出决策树

越详细越好

2)设计代码

仔细观察决策树。

围绕三个主要的方面进行考虑:全局变量、dfs 函数、细节(回溯、剪枝)

  • 全局变量
  //全局变量
    vector<vector<int>> ans;    //结果集
    vector<int> path;           //走过的路径
    bool check[7];              //剪枝数组
  • dfs 函数

仅需关心,某一个结点在干什么事情

  • 细节问题

回溯
1. 干掉 path 最后一个元素
2.修改 check 数组
剪枝
递归出口遇到叶子结点的时候,直直接添加结果

4、代码

class Solution {

    //回溯+剪枝+dfs

    //全局变量
    vector<vector<int>> ans;    //结果集
    vector<int> path;           //走过的路径
    bool check[7];              //剪枝数组

public:
    //深搜
    void dfs(vector<int>& nums)
    {
        //出口---叶子结点,走过的路径==nums.size
        if (path.size() == nums.size())
        {
            //更新结果集
            ans.push_back(path);
            return;
        }

        //对数组开始循环遍历
        for (int i = 0; i < nums.size(); i++)
        {
            //剪枝
            if (!check[i]) //尚未被选择
            {
                check[i] = true;           //更新
                path.push_back(nums[i]);    //path更新
                dfs(nums);                  //继续深搜
                path.pop_back();            //回溯,更新path
                check[i] = false;            //恢复
            }
        }

    }
    vector<vector<int>> permute(vector<int>& nums) {
        dfs(nums);

        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

景鹤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值