目录
一、回溯算法介绍
什么是回溯算法
回溯算法是⼀种经典的递归算法,通常用于解决组合问题、排列问题和搜索问题等。
回溯算法的基本思想:从⼀个初始状态开始,按照⼀定的规则向前搜索,当搜索到某个状态⽆法前进时,回退到前⼀个状态,再按照其他的规则搜索。
回溯算法在搜索过程中维护⼀个状态树,通过遍历状态树来实现对所有可能解的搜索。
回溯算法的核心思想:“试错”,即在搜索过程中不断地做出选择,如果选择正确,则继续向前搜 索;否则,回退到上⼀个状态,重新做出选择。回溯算法通常⽤于解决具有多个解,且每个解都需要 搜索才能找到的问题。
回溯算法的模板
void backtrack(vector<int>& path, vector<int>& choice, ...) {
// 满⾜结束条件
if (/* 满⾜结束条件 */) {
// 将路径添加到结果集中
res.push_back(path);
return;
}
// 遍历所有选择
for (int i = 0; i < choices.size(); i++) {
// 做出选择
path.push_back(choices[i]);
// 做出当前选择后继续搜索
backtrack(path, choices);
// 撤销选择
path.pop_back();
}
}
其中, path 表示当前已经做出的选择, choices 表示当前可以做的选择。
在回溯算法中,我们需要做出选择,然后递归地调⽤回溯函数。
如果满足结束条件,则将当前路径添加到结果集中;否则, 我们需要撤销选择,回到上⼀个状态,然后继续搜索其他的选择。
回溯算法的时间复杂度通常较⾼,因为它需要遍历所有可能的解。但是,回溯算法的空间复杂度较 低,因为它只需要维护⼀个状态树。
在实际应⽤中,回溯算法通常需要通过剪枝等方法进行优化,以减少搜索的次数,从而提高算法的效率。
对于我们解题最重要的就是画出决策树,把所有情况的详细的列出来。根据决策树,进行不同方面的消息。
二、实践
1、题目链接
2、题目

3、解法(回溯+剪枝)
1)优先画出决策树
越详细越好
2)设计代码
仔细观察决策树。
围绕三个主要的方面进行考虑:全局变量、dfs 函数、细节(回溯、剪枝)
- 全局变量
//全局变量 vector<vector<int>> ans; //结果集 vector<int> path; //走过的路径 bool check[7]; //剪枝数组
- dfs 函数
仅需关心,某一个结点在干什么事情
- 细节问题
回溯
1. 干掉 path 最后一个元素
2.修改 check 数组
剪枝
递归出口遇到叶子结点的时候,直直接添加结果
4、代码
class Solution {
//回溯+剪枝+dfs
//全局变量
vector<vector<int>> ans; //结果集
vector<int> path; //走过的路径
bool check[7]; //剪枝数组
public:
//深搜
void dfs(vector<int>& nums)
{
//出口---叶子结点,走过的路径==nums.size
if (path.size() == nums.size())
{
//更新结果集
ans.push_back(path);
return;
}
//对数组开始循环遍历
for (int i = 0; i < nums.size(); i++)
{
//剪枝
if (!check[i]) //尚未被选择
{
check[i] = true; //更新
path.push_back(nums[i]); //path更新
dfs(nums); //继续深搜
path.pop_back(); //回溯,更新path
check[i] = false; //恢复
}
}
}
vector<vector<int>> permute(vector<int>& nums) {
dfs(nums);
return ans;
}
};