【C语言】数据的存储

 专栏:C语言

作者:无名编程小白

目录

#整型在内存中存储

#大小端字节序

#浮点型在内存中的存储


#整型在内存中存储

要想了解整型在内存中是如何存储我们首先要了解一组概念:原码、反码、补码

原码:直接将数值按照正负数的形式翻译成二进制就可以得到这个数的原码

反码:将原码的符号位不变,其他位依次按位取反即可得到反码

补码:反码加一就是补码

这三种方法都包含符号位和数值位,符号位0为正,1为负

正数的原、反、补都相同

整型数据在内存中存储方式是补码,我们举例来观察一下

 由此我们可以看出整型在存储时确实是以补码存储的。同时我们观察到在内存中存储的顺序似乎跟我们得出的不太一样,这就涉及到我的大小端存储了。

#大小端字节序

首先简单介绍一下什么是大小端

大端存储模式:数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中

 小端存储模式:数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中

 由上图我们可以看出我们的电脑使用的是小端存储

那么为什么会有大小端之分呢?

这是因为在计算机系统中,我们以字节为单位,每个地址单元都对应一个字节,一个字节为8bit。但是c语言中除了8bit的char外,还有16bit的short,32bit的long,另外对于位数大于八位的处理器,如16位或32位的处理器,由于寄存器宽度大于一个字节,那么必然存在多字节安排的问题,因此导致了大小端存储模式的产生。

那么你能设计一个程序来判断当前机器的存储方式么?

#浮点型在内存中的存储

 对于浮点数的存储,我们先看一个例子:

int main() {
	int n = 9;
	float* pfloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pfloat的值为:%f\n", *pfloat);

	*pfloat = 9.0;
	printf("n的值为:%d\n", n);
	printf("*pfloat的值为:%f\n", *pfloat);
	return 0;
}

这段代码打印出的结果是什么样的呢?

 怎么样你答对了么?那么为什么是这样的结果呢,我来一一揭晓

首先我们了解一下浮点数电脑内部的表示方法

根据国际标准IEEE754,任何一个二进制浮点数V可以表示成如下形式:

(-1)^S*M*2^E

(-1)^S表示符号位,S=0时,V为正数,S=1时,V为负数

M表示有效数字,大于等于1,小于2

2^E表示指数位

举个例子理解一下

5.5

二进制表示为101.1

用上述表示法表示为(-1)^0 *1.011* 2^2

 由上述表示法我们可以看出每个浮点数只有S,M,E在变化,所以我们只需要将这三个值对应存起来就可以了

IEEE754规定:

对于32位的浮点数,最高的1位是符号位S,接着8位是指数E,剩下的23位是有效数字M。

 对于64位的浮点数,最高的1位是符号位S,接着11位是指数E,剩下的52位是有效数字M。

 

IEEE754对于E,M还有规定:

因为1<=M<2,所以计算机在保存M时,默认这个数的第一位是1,因此可以被舍去,只保留小数部分,这样可以节省一个有效数字,以32位浮点数为例,留给M只有23位,但可以保存24位有效数字。

至于E,首先E是一个无符号整型,所以如果E是8位,那它的取值范围是0-225;如果E是11位,那它的取值范围是0-2047.但我们知道科学计数法中,指数是可以为负数的,因此我们在存储E的真实值时,必须再加一个中间数,对于8位的E,中间数为127;对于11位的E,中间数为1023。

然后,E从内存中取出有三种情况:

E不为全0或不为全1

这时,浮点数就采用指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1.

E全为0

这时我们发现真实值E为1-127(或1-1023)非常小,所以此时有效数字M不再加上第一位的1,而是还原成0.xxxx的小数,这样做是为了表示0,以及接近0的很小的数字。

E全为1

这时我们发现真实值E非常大,所以此时表示正负无穷大(正负取决于符号位)。

至此,我们了解了浮点数的存储规则,那么接下来我们回过头分析一下开始时的那个例子为什么产生那样的结果。

首先n为9,以十进制打印为9没问题

00000000000000000000000000001001 -9的补码(内存中的存储形式)

当以十六进制打印时,我认为上面代表的是一个浮点数,站在浮点数的角度代入可得

0 00000000 00000000000000000001001

我们发现E为全0,有效数字前不会再加上1,相当于原数是-1^0*0.00000000000000000001001*2^(-126),这个数字已经是一个无限接近于0的数字,所以%f打印出的是0.000000

*pfloat=9.0后得到的是-1^0*1.001*2^3

0 10000010 00100000000000000000000

此时我们再以十进制打印我们会认为存储的这个是一个整型,站在整型的角度代入可得

这个数符号位为0,说明是正数,原反补相同,该数为1000001000100000000000000000000,转化为十进制就是1091567616

浮点数形式放入n再以浮点数形式打印肯定为9.0

至此,完美解释打印出的结果。

ok,文章到这就结束啦,码字不易,学到一些东西的老铁,点个关注,写个评论呗,后续还会继续更新更有价值的东西,这只是梦的开始……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值