611 合并二叉树
这题思路比较清晰 同时遍历两个二叉树从根节点开始 可以重新定义一个根节点
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
if(root1==nullptr) return root2;
if(root2==nullptr) return root1;
TreeNode* root = new TreeNode(0);
root->val=root1->val+root2->val;
root->left=mergeTrees(root1->left,root2->left);
root->right=mergeTrees(root1->right,root2->right);
return root;
}
};
700 二叉搜索树中搜索
这题思路也很简单 从根节点开始遍历 判断该节点的值和要搜索的值大小关系 然后分别向左右子树去遍历搜索
98 验证二叉搜索树
做这题要知道二叉搜索树的一个性质 就是用中序遍历的方式遍历二叉搜索树得到的数组是一个单调递增的数组 利用这个特性 我们可以用双指针的方法 定义一个pre节点 中序遍历是左中右 先往左孩子遍历 然后判断当前节点的值是否大于前一节点(注意要保持pre指向前一个节点) 然后在遍历右孩子
class Solution {
public:
TreeNode* pre=nullptr;
bool isValidBST(TreeNode* root) {
if(root==nullptr) return true;
bool left = isValidBST(root->left);
if(pre!=nullptr && root->val<=pre->val){
return false;
}
pre=root;
bool right = isValidBST(root->right);
return left&&right;
}
};
530 二叉搜索树的最小绝对差
思路同上题一样 中序遍历得到的数组是单调递增的 所以相邻节点的差值是最小的
501 二叉搜索树中的众数
思路也很简单 同样是采用中序遍历的方法 用两个指针来判断当前节点和前一个节点的值是否相等 如果相等计数count++ 但是本题可能会出现很多的众数 可以采用两次循环的方法 第一个次先找出众数出现的次数 第二次循环 把达到次数的数放进数组 其实一次循环也可以做到 就是定义一个maxcount 每当count大于maxcount的时候 就要更新maxcount然后把数组清空 重现放入元素不断的去更新
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
if(root1==nullptr) return root2;
if(root2==nullptr) return root1;
TreeNode* root = new TreeNode(0);
root->val=root1->val+root2->val;
root->left=mergeTrees(root1->left,root2->left);
root->right=mergeTrees(root1->right,root2->right);
return root;
}
};
236 二叉树的最近公共祖先
寻找最近公共祖先 如果这道题可以从下往上去查找就好做很多 二叉树的后序遍历就是一个回溯的过程 从下往上先是左右孩子 后是根节点 所以我们采用后序遍历的方式 确定终止条件如果root==q||p 即找到了 则返回root 如果root为空则返回空 然后往左右孩子遍历 如果左右子树都不为空 返回root节点 当左子树不为空 右子树为空 返回左子树 同理右子树不为空也是这么处理 如果都为空返回空
235 二叉搜索树的最近公共祖先
做二叉搜索树的题目时 我们要合理运用二叉搜索树的特性 同样时从根节点判断 如果根节点的值大于pq区间 就往左子树去搜索 如果小于往右子树去搜索 在区间内的话就直接返回(迭代法也是同样思路)
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while(root){
if(root->val>p->val && root->val>q->val){
root=root->left;
}else if(root->val<q->val && root->val<p->val){
root=root->right;
}else{
return root;
}
}
return nullptr;
}
};