【GPT快速工程】简洁版

前一阵在整理md笔记的时候翻到了去年记录的gpt提示工程,当时觉得这个应该好多人都有学习就没有考虑发出来,现在觉得有点后悔要是去年看完Sheila Teo的博客立即分享的话肯定会有很多人注意到,现在已经晚了。 但是还是后来翻阅了一下别人的博客感觉说的有的比较复杂,有的没我记录的全面,因此决定还是再整理一下发出来。我觉得还是有必要提前声明,很多内容并不是我们自己提出的,只是从别人博客学到并使用,但是好多人没有提到,例如以下内容就是首届 GPT-4 提示工程大赛冠军Sheila Teo在他的博客中分享的一些技巧。

一、使用 CO-STAR 框架构建提示

  • (C)背景:提供任务的背景信息
    这有助于 LLM 了解正在讨论的具体场景,确保其回应是相关的。
  • (O)目标:明确你希望 LLM 执行的任务是什么
    明确你的目标有助于 LLM 集中精力实现该特定目标。
  • (S)风格:指定您希望 LLM 使用的写作风格
    这可能是某个名人的写作风格,也可能是某个行业的某个专家,比如商业分析师或 CEO。这将指导 LLM 以符合您需求的方式和措辞进行回复。
  • (T)语气:设定回应的态度
    这确保 LLM 的回应与预期的情绪或情感背景产生共鸣。例如正式、幽默、富有同理心等。
  • (A)受众:确定回应的对象
    根据受众(例如某个领域的专家、初学者、儿童等)定制 LLM 的回应,确保它在您需要的背景下是适当且易于理解的。
  • (R)回复:提供回复格式
    这可确保 LLM 输出的格式与您执行下游任务所需的格式完全一致。示例包括列表、JSON、专业报告等。对于大多数以编程方式处理 LLM 响应以进行下游操作的 LLM 应用程序而言,JSON 输出格式是理想的选择。

当然,上面的框架只是建议,并不是每一条都要用上,具体取决于使用的环境,甚至你可以根据你的需求进行灵活改动,例如在下面示例中我们在对agent提示时,就不必强调语气、受众、风格等:

system_message="""
                    #OBJECTIVE#
                    You are a Resource Agent. 
                    You need to analyze the cloud failure events in the current system based on your rich experience and database knowledge.
                    #############
                    #CONTEXT#
                    You need to first use your own search skills to obtain relevant historical cases and knowledge from the knowledge base. If similar events or experiences are retrieved, you should try to use them; if not, you need to rely on your own experience to make judgments.
                    Next, please make sure to perform the following steps:
                    1. You need to observe the current cloud event situation and analyze whether the problem is related to your professional field based on your current knowledge and judgment ability.
                    2. If it is determined that the event is related to your professional field, enter the hypothesis generation and verification cycle:
                       - Generate a hypothesis based on the observed information and your own knowledge.
                       - Determine whether the hypothesis has sufficient data support. You can use your skill to query the Observation Agent.
                       - If the hypothesis has sufficient data support, form a final conclusion and exit the loop.
                       - Otherwise, continue to generate new hypotheses and repeat the verification process.
                    3. If it is determined that the event is not related to your professional field, end the entire analysis process.
                    4. Return your final conclusion.
                    #############
                    #RESPONSE#
                    You should provide analysis results related to the system troubleshooting area in the current system failure event.
                    #############
                    #SKILLS#
                    You have the RAG knowledge base tool RAG(), which can retrieve similar historical events and knowledge experiences through similarity retrieval. You can call the function RAG() to obtain this capability.
                    """,

二、使用分隔符划分提示

  • 使用分隔符的一种方法是将它们用作 XML 标签。XML 标签是用尖括号括起来的标签,带有开始和结束标签。一个例子是<tag></tag>。这种方法很有效,因为 LLM 已经接受过大量 XML 网络内容的培训,并且已经学会了理解其格式。
    示例:
  <task>解释下列法律条款</task>
  • 另一种方法是JSON / YAML 结构。其优点是结构化强,便于解析。适用于:函数调用、API 集成、工具类提示等。
    示例:
{ "role": "翻译助手", "language": "日语" }

还有一些其他方法,但使用的不多,总结在下面

分隔符类型结构性可读性推荐用途
XML / HTML 标签多模块提示、嵌套结构
Markdown 标题教育内容、分段结构
JSON / YAML工具集成、函数调用
自然语言标志多轮对话、问答结构
特殊符号标记模板、嵌套提示
模型系统 TokenAPI 接口标准化

三、使用 LLM Guardrails 创建系统提示

系统提示(System Prompt)是一段在与大模型交互前设置的“规则说明”,用来告诉模型该做什么、怎么做、不能做什么,从而提升响应的 准确性、安全性和一致性


1.任务定义(Task Definition)

含义:

指明 LLM 的核心职责角色定位,让它在整个对话中始终清楚自己的“身份”和“任务”。

示例:

“你是一个面向高中生的数学辅导老师,负责用简洁易懂的语言解答数学问题,并帮助学生理解数学概念。”


2.输出格式

含义:

设定模型输出的结构与表现形式,让结果更一致、清晰、易用。

说明:

  • 约定输出格式,例如 Markdown、HTML、JSON、纯文本等。
  • 使用小标题、列表、表格等结构化排版方式。
  • 控制表达风格,例如“正式”“通俗”“不使用缩写”。

示例:

“请使用 Markdown 输出,每个答案需包含以下结构:问题摘要解决方案步骤参考资料。”


3.护栏(Guardrails)

含义:

为模型设置内容边界与行为限制,确保安全合规地运行。

说明:

  • 限制敏感话题(如医疗、法律、政治)。
  • 明确禁止提供特定类型信息(如个人建议、虚假引用)。
  • 要求模型在缺乏信息时说明“无法回答”,避免编造。

示例:

“不要提供任何医疗建议。对涉及健康的提问,仅提供一般性信息,并始终建议用户咨询医生。”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值