贪心算法(找零)

文章介绍了贪心算法的基本概念,强调了无后效性在策略选择中的重要性。通过背包问题和钱币找零问题举例,说明贪心算法并不一定能得到全局最优解,并提供了反例来证明。贪心策略的应用需谨慎,需确保能导致全局最优解。
摘要由CSDN通过智能技术生成

1. 贪心算法的概念

所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。

2. 基本思路

建立数学模型来描述问题。

把求解的问题分成若干个子问题。

对每一子问题求解,得到子问题的局部最优解。

把子问题的解局部最优解合成原来解问题的一个解。

3. 适用的问题

贪心策略适用的前提是:局部最优策略能导致产生全局最优解。也就是当算法终止的时候,局部最优等于全局最优。

因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。

如果确定可以使用贪心算法,那一定要选择合适的贪心策略;

4. 实例讲解

4.1 背包问题

问题: 有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

物品

A

B

C

D

E

F

G

重量

35

30

60

50

40

10

25

价值

10

40

30

50

35

40

30

分析:

目标函数: ∑pi最大

约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)

(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?

(2)每次挑选所占重量最小的物品装入是否能得到最优解?

(3)每次选取单位重量价值最大的物品,成为解本题的策略。

一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。

对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:

(1)贪心策略:选取价值最大者。

反例:

W=30

物品:A B C

重量:28 12 12

价值:30 20 20

根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。

(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。

(3)贪心策略:选取单位重量价值最大的物品。反例:

W=30

物品:A B C

重量:28 20 10

价值:28 20 10

在 动态规划中将会学习三种最基本的背包问题:零一背包,部分背包,完全背包。上面已经证明,背包问题不能使用贪心算法。

不能解决为什么还要引用背包问题来讲解贪心算法呢?

为了加深对贪心算法的理解: 整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。

4.2 钱币找零问题

这个问题在我们的日常生活中就更加普遍了。

用贪心算法的思想,很显然,每一步尽可能用面值大的纸币即可。

假设纸币金额为1元、5元、10元、20元、50元、100元,123元应该尽可能兑换少的纸币。

按尝试应该兑换1张100、1张20元和3张1元的。

算法思路很简单,只需要尽可能从最大的面值往下一直减即可。

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值