[NOIP2002 提高组] 均分纸牌

题目描述

有N堆纸牌,编号分别为 1,2,…,1,2,…,N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 11 堆上取的纸牌,只能移到编号为 22 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 −1N−1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4 时,4堆纸牌数分别为 9,8,17,6。

移动 3 次可达到目的:

  • 从第三堆取 4 张牌放到第四堆,此时每堆纸牌数分别为 9,8,13,10。
  • 从第三堆取 3 张牌放到第二堆,此时每堆纸牌数分别为 9,11,10,10。
  • 从第二堆取 11 张牌放到第一堆,此时每堆纸牌数分别为 10,10,10,10。

输入格式

第一行共一个整数 N,表示纸牌堆数。 第二行共 N 个整数 1,2,⋯ ,A1​,A2​,⋯,AN​,表示每堆纸牌初始时的纸牌数。

输出格式

共一行,即所有堆均达到相等时的最少移动次数。

4
9 8 17 6
3

提示

对于 100%100% 的数据,1≤N≤100,1≤Ai​≤10000。

【题目来源】

NOIP 2002 提高组第一题

分析

把一堆牌均分,其实就是看这堆牌和均值差多少,先对a[i]-=avg(均值)

选区间和绝对值大      右给a[site+1] 左边给a[site-1].a[site]-=abs(sum_r) 或者a[site]-=abs(sum_l)

找到最大值和它的坐标, max1=7 ,site=3,对右边和左边求区间和

每进行一次给牌操作times++,每一次操作前统计数组中0的个数,当0的个数为n时,循环结束

原理:数组的和必定为0,每一次给牌只需要给区间和更大的一边就行了(贪心)

代码

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1010;
long long times = 0;
int a[N];
//r是区间右边,l是区间左边,i是最大值所在的坐标,max1是要返回的最大值,num是要传入的数组
void locate(int r, int l, int* i, int* max1, int* num) {
	r = min(r, l);
	l = max(r, l);
	*max1 = num[1];//将max1的值重置
	for (int j = r; j <= l; j++) {
		*max1 = max(num[j], *max1);//选出每一次的最大值
	};
	for (int j = r; j <= l; j++) {
		if (*max1 == num[j]) {
			*i = j;//得到区间中第一个为max1的值的坐标
			return;
		};
	};
};
//分一次纸牌 分给最缺纸牌的那一边区间
//r是右端点,l是左端点,number是数组目标0的个数
void divide(int r,int l,int *num,int number) {
	int ans=0;
	while (ans<number) {
		ans = 0;
		r = min(r, l);//左右区间预处理
		l = max(r, l);
		int max1, site;
		//统计区间0的个数
		for (int i = r; i <= l; i++) {
			if (num[i] == 0)ans++;
		};
		if (ans == number)return;
		locate(r, l, &site, &max1, num);//找到区间最大值和坐标
		int sum_r = 0, sum_l = 0;//左右区间的区间和
		for (int i = r; i < site; i++) sum_r += num[i];//r到site-1的区间和
		for (int i = site + 1; i <= l; i++) sum_l += num[i];//site+1到l的区间和
		//比较二者谁的区间和更大
		if (abs(sum_r) > abs(sum_l)) {
			num[site] -= abs(sum_r);//给site-1 abs(sum_r)个纸牌
			num[site - 1] += abs(sum_r);
			times++;//次数+1
		}
		else if(abs(sum_r)<abs(sum_l)) {
			num[site] -= abs(sum_l);//给site+1 abs(sum_l)个纸牌
			num[site + 1] += abs(sum_l);
			times++;//次数+1
		};
	};
	return;
};
int main() {
	int n, sum = 0, avg = 0, cnt = 0;
	cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		sum += a[i];
	};
	avg = sum / n;
	for (int i = 1; i <= n; i++) {
		a[i] -= avg;
	};
	divide(1, n, a, n);
	cout << times << endl;
	return 0;
};
//divide 可以替换以下代码
/*
* int r = 1, l = n;
	while (cnt < n) {
		r = min(r, l);
		l = max(r, l);
		int max1, site;
		//统计区间0的个数
		cnt = 0;
		for (int i = r; i <= l; i++) {
			if (a[i] == 0) {
				cnt++;
			};
		};
		locate(r, l, &site, &max1, a);//找到区间最大值和坐标
		int sum_r = 0, sum_l = 0;//左右区间的区间和
		for (int i = r; i < site; i++) sum_r += a[i];//r到site-1的区间和
		for (int i = site + 1; i <= l; i++) sum_l += a[i];//site+1到l的区间和
		//比较二者谁的区间和更大
		if (abs(sum_r) > abs(sum_l)) {
			a[site] -= abs(sum_r);//给site-1 abs(sum_r)个纸牌
			a[site - 1] += abs(sum_r);
			times++;//次数+1
		}
		else if(abs(sum_r)<abs(sum_l)) {
			a[site] -= abs(sum_l);//给site+1 abs(sum_l)个纸牌
			a[site + 1] += abs(sum_l);
			times++;//次数+1
		};
	};
*/

ac了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值