目录
一、目标设定
利用机器学习和深度学习技术,实现互联网舆情的实时监测和分析,帮助企业或组织及时了解公众对其品牌、产品或服务的态度和看法。
二、关键知识点梳理
-
文本数据的收集与预处理
-
从互联网收集文本数据(如社交媒体评论、新闻文章等)
-
文本清洗:去除噪声、分词、去除停用词等
-
-
情感分析模型构建
-
使用预训练的情感分析模型(如 BERT)或构建自定义模型
-
训练模型以识别文本中的情感倾向(正面、负面、中性)
-
-
舆情数据的存储与管理
-
使用数据库存储大规模舆情数据
-
数据库设计与优化,确保高效的数据存储和查询能力
-
-
后端部署与服务化
-
将情感分析模型部署为后端服务
-
通过 API 提供舆情分析功能,支持前端应用的实时调用
-
三、案例讲解与实战操作
1. 文本数据收集与预处理
import requests
from bs4 import BeautifulSoup
import re
# 从网页收集评论数据
def scrape_comments(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
comments = soup.find_all('div', class_='comment-content')
return [comment.get_text() for comment in comments]
# 示例:爬取某网页的评论
url = 'https://example.com/comments'
comments = scrape_comments(url)
# 文本预处理
import jieba
import jieba.analyse
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
# 分词和去除停用词
stopwords = set(line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines())
processed_comments = []
for comment in comments:
# 分词
segs = jieba.lcut(comment)
# 去除停用词和非中文字符
filtered_segs = [seg for seg in segs if seg not in stopwords and re.match(r'^[\u4e00-\u9fa5]+$', seg)]
processed_comments.append(' '.join(filtered_segs))
# 划分训练集和测试集
X_train, X_test = train_test_split(processed_comments, test_size=0.2, random_state=42)
2. 情感分析模型训练
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder
# 加载预训练的词向量模型(示例使用自训练的TF-IDF向量化)
vectorizer = TfidfVectorizer(max_features=5000)
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)
# 假设我们已经有了情感标签
y_train = [...] # 训练集情感标签
y_test = [...] # 测试集情感标签
# 编码标签
label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)
# 训练分类器
clf = SVC(kernel='linear', C=1.0, probability=True)
clf.fit(X_train_vec, y_train_encoded)
# 模型评估
y_pred = clf.predict(X_test_vec)
print(classification_report(y_test_encoded, y_pred, target_names=label_encoder.classes_))
3. 舆情数据存储
import sqlite3
# 创建数据库连接
conn = sqlite3.connect('sentiment_analysis.db')
cursor = conn.cursor()
# 创建表
cursor.execute('''
CREATE TABLE IF NOT EXISTS sentiment_data (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT NOT NULL,
sentiment TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
# 插入数据
def store_sentiment_data(text, sentiment):
cursor.execute('INSERT INTO sentiment_data (text, sentiment) VALUES (?, ?)', (text, sentiment))
conn.commit()
# 示例:存储分析结果
for text, sentiment in zip(X_test, y_test):
store_sentiment_data(text, sentiment)
# 查询数据
cursor.execute('SELECT * FROM sentiment_data')
rows = cursor.fetchall()
for row in rows:
print(row)
# 关闭数据库连接
conn.close()
4. 后端部署与服务化
from flask import Flask, request, jsonify
import joblib
import numpy as np
# 加载模型和向量化器
model = joblib.load('sentiment_model.pkl')
vectorizer = joblib.load('tfidf_vectorizer.pkl')
label_encoder = joblib.load('label_encoder.pkl')
app = Flask(__name__)
@app.route('/analyze', methods=['POST'])
def analyze_sentiment():
data = request.json
text = data.get('text', '')
# 文本预处理(分词、去停用词等步骤应在此处实现)
# 为了简化,这里假设直接使用向量化器转换文本
text_vec = vectorizer.transform([text])
# 情感预测
sentiment_prob = model.predict_proba(text_vec)[0]
sentiment_pred = model.predict(text_vec)[0]
sentiment_label = label_encoder.inverse_transform([sentiment_pred])[0]
# 存储数据
store_sentiment_data(text, sentiment_label)