绘制交互式基础图形

文章详细描述了如何使用Python和Pyecharts库处理数据,包括从CSV文件加载数据,对2017年6月的销售数据进行分析,绘制销量前五的商品柱状图、售货机每月总交易额折线图、各类商品销售额饼图以及时间线图,展示了数据预处理和图形化展示的重要步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集:处理后的数据.csv

数据集链接:https://pan.baidu.com/s/1fDubZdmnfR5iyfPN9b9_bQ?pwd=1122 
提取码:1122

 统计2017年6月销量前五的商品销量、每台售货机每月的总交易额、每台售货机各类(大类)商品的销售额,并利用这些数据集绘制相关图形

 1.查看数据集(只显示第一条数据)
​
import pandas as pd 
data = pd.read_csv('F:/data/处理后的数据.csv',encoding='gbk',nrows=1)
data

​
2.设置系列配置项和全局变量项,绘制销量前五的商品销量柱形图
import os 
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar
import warnings
warnings.filterwarnings('ignore', category=pd.errors.DtypeWarning)
# 将提供的数据转换为DataFrame
data = pd.read_csv('F:/data/处理后的数据.csv',encoding='gbk')
# 转换日期格式以便筛选月份
data['支付时间'] = pd.to_datetime(data['支付时间'], format='%Y/%m/%d %H:%M', errors='coerce')
# 筛选出2017年6月的数据
june_data = data[data['支付时间'].dt.month == 6]

# 按照商品分组,求销量  
grouped = june_data.groupby('商品').size().reset_index()  
grouped.columns = ['商品', '商品数量']  # 直接给列赋值  
# 取销量前5的商品
top_5_sales = grouped.sort_values(by='商品数量', ascending=False).head(5)
# 准备柱状图数据
categories = top_5_sales['商品'].tolist()
sales_data = top_5_sales['商品数量'].tolist()
# 创建柱状图
bar = (
    Bar(init_opts=opts.InitOpts(width='600px',height='400px'))
    .add_xaxis(categories)
    .add_yaxis(
        series_name='商品数量',
        y_axis=sales_data,
        label_opts=opts.LabelOpts(position='top'),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title='2017年6月销量前五的商品'),
        xaxis_opts=opts.AxisOpts(axislabel_opts={'rotate': 30}),  # 防止标签重叠
    )
)
bar.render_notebook()
# 使用render方法将图形渲染到指定的路径  
# bar.render(path=os.path.join('F:/htm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值