数据集:处理后的数据.csv
数据集链接:https://pan.baidu.com/s/1fDubZdmnfR5iyfPN9b9_bQ?pwd=1122
提取码:1122
统计2017年6月销量前五的商品销量、每台售货机每月的总交易额、每台售货机各类(大类)商品的销售额,并利用这些数据集绘制相关图形
1.查看数据集(只显示第一条数据)
import pandas as pd data = pd.read_csv('F:/data/处理后的数据.csv',encoding='gbk',nrows=1) data
2.设置系列配置项和全局变量项,绘制销量前五的商品销量柱形图
import os import pandas as pd from pyecharts import options as opts from pyecharts.charts import Bar import warnings warnings.filterwarnings('ignore', category=pd.errors.DtypeWarning) # 将提供的数据转换为DataFrame data = pd.read_csv('F:/data/处理后的数据.csv',encoding='gbk') # 转换日期格式以便筛选月份 data['支付时间'] = pd.to_datetime(data['支付时间'], format='%Y/%m/%d %H:%M', errors='coerce') # 筛选出2017年6月的数据 june_data = data[data['支付时间'].dt.month == 6] # 按照商品分组,求销量 grouped = june_data.groupby('商品').size().reset_index() grouped.columns = ['商品', '商品数量'] # 直接给列赋值 # 取销量前5的商品 top_5_sales = grouped.sort_values(by='商品数量', ascending=False).head(5) # 准备柱状图数据 categories = top_5_sales['商品'].tolist() sales_data = top_5_sales['商品数量'].tolist() # 创建柱状图 bar = ( Bar(init_opts=opts.InitOpts(width='600px',height='400px')) .add_xaxis(categories) .add_yaxis( series_name='商品数量', y_axis=sales_data, label_opts=opts.LabelOpts(position='top'), ) .set_global_opts( title_opts=opts.TitleOpts(title='2017年6月销量前五的商品'), xaxis_opts=opts.AxisOpts(axislabel_opts={'rotate': 30}), # 防止标签重叠 ) ) bar.render_notebook() # 使用render方法将图形渲染到指定的路径 # bar.render(path=os.path.join('F:/htm